

Copyright © 2004 AAF Association

NOTES – The user’s attention is called to the possibility that implementation and compliance with this specification may require use of
subject matter covered by patent rights. By publication of this specification, no position is taken with respect to the existence or validity
of any claim or of any patent rights in connection therewith. The AAFA, including the AAFA Board of Directors, shall not be responsible
for identifying patents for which a license may be required by an AAF specification or for conducting inquiries into the legal validity or
scope of those patents that are brought to its attention.

AAF ASSOCIATION SPECIFICATION

 Advanced Authoring Format (AAF)
 Stored Format Specification v1.0.1

 2

Object Manager Stored Format
Avid Technology Inc.

Version 1.0.1

Author: Tim Bingham
(revised Feb 12, 2004 by Oliver Morgan, Metaglue Corp)

July 12, 2004

 3

Contents

1. Mapping of Objects to Structured Storage ...4

1.1 Overview ..4
1.2 Data Structures ...6

1.2.1.1 Integral Types ..6
1.2.1.2 Data Types ...6
1.2.1.3 Property Index ...6

1.2.1.3.1 Purpose...6
1.2.1.3.2 External representation...6
1.2.1.3.3 Structure of Property Index Header..6
1.2.1.3.4 Structure of a Property Index Entry..6

1.2.1.4 Strong Object Reference ..7
1.2.1.4.1 Purpose...7
1.2.1.4.2 External Representation ...7

1.2.1.5 Strong Object Reference Vector ..7
1.2.1.5.1 Purpose...7
1.2.1.5.2 External Representation ...7
1.2.1.5.3 Structure of a Strong Object Reference Vector Index Header..7
1.2.1.5.4 Structure of a Strong Object Reference Vector Index Entry ..7

1.2.1.6 Strong Object Reference Sets ..8
1.2.1.6.1 Purpose...8
1.2.1.6.2 External Representation ...8
1.2.1.6.3 Structure of a Strong Object Reference Set Index Header ...8
1.2.1.6.4 Structure of a Strong Object Reference Set Index Entry..8

1.2.1.7 Weak Object Reference ...9
1.2.1.7.1 Purpose...9
1.2.1.7.2 External representation...9
1.2.1.7.3 Structure of a Weak Object Reference ...9

1.2.1.8 Weak Object Reference Vector..9
1.2.1.8.1 Purpose...9
1.2.1.8.2 External representation...9
1.2.1.8.3 Structure of a Weak Reference Vector Index Header ..9
1.2.1.8.4 Structure of a Weak Object Reference Vector Index Entry..9

1.2.1.9 Weak Object Reference Set ...9
1.2.1.9.1 Purpose...9
1.2.1.9.2 External Representation ...10
1.2.1.9.3 Structure of a Weak Object Reference Set Index Header...10
1.2.1.9.4 Structure of a Weak Object Reference Set Index Entry ...10

1.2.1.10 Media Data..10
1.2.1.10.1 Purpose...10
1.2.1.10.2 External Representation ...10

1.2.1.11 The Referenced-Properties Table..10
1.2.1.12 The Referenced-Properties Table Header ...10

1.3 Storage and Stream Naming ...10
1.4 Stored Forms ..10

1.4.1 Assignments ...11
1.4.1.1 Notes..11

1.4.2 Currently Defined Values ...11
1.4.2.1 Key...11
1.4.2.2 Notes..12

1.4.3 Representations by Stored Form...12
1.5 Capacity Limits ..12

 4

1.5.1 PropertyIndexHeader and PropertyIndexEntry...12
1.5.2 Other fields ...13

1.6 File Signatures ..13

1. Mapping of Objects to Structured Storage

1.1 Overview

1) Each object is represented by a corresponding IStorage. The stored id of the object is stored as the CLSID of the

IStorage object and is part of the structured storage overhead.
2) Each IStorage contains an IStream called "properties". The “properties” IStream is consists of two parts, the first

portion contains the index of properties for the object and the second portion contains the “flat” or “simple”
property values for the object. “Flat” and “simple” here means values that are not objects, that are not object
collections and that are not streams. Note, however, that objects, object collections and streams do contribute to the
“properties” IStream. The index and values are in the same IStream, rather than in separate IStreams, to reduce the
Structured Storage overhead.
a) The property index portion contains a header followed by a counted array of structures.

i) The header has the format.
(1) Byte order
(2) Count of properties. The number of array elements that follow.

ii) The counted array has the format with the following fields
(1) Property Id – identifies the property
(2) Property stored form - the structural “type” of the property. This indicates the meaning of the “flat”

value in the “properties” stream.
(3) Size – the size of the “flat” value of this property in the “properies” IStream.

b) The property value portion contains the “flat values” of the properties for this object.
3) A single contained object is stored in a sub-IStorage. The name of the IStorage is given by the “flat” value in the

“properties” IStream corresponding to the contained object’s entry in the "properties" IStream.
4) A contained vector of objects is represented as follows

a) Each vector is described by an index stored in an IStream. The name of the vector index IStream is given by
the “flat” value in the “properties” IStream corresponding to the contained object vector’s entry in the
"properties" IStream.

b) The contents of the vector index IStream are
i) Count of objects
ii) First free insertion key
iii) Last free insertion key
iv) Array of insertion key values, one for each contained object, the first key in the array is the key of the first

object in the contained vector and so on.
c) Each sub-object in the contained vector is stored in an IStorage whose name is formed from the name of the

vector and the insertion key of the contained object.
5) A contained sets of objects is represented as follows.

a) Each set is described by an index stored in an IStream. The name of the set index IStream is given by the
“flat” value in the “properties” IStream corresponding to the contained object set’s entry in the "properties"
IStream.

b) The contents of the set index IStream are
i) Count of objects
ii) First free insertion key
iii) Last free insertion key

 5

iv) Key property id – the id of the property used to uniquely identify each object in the set. The value of this
property is the object’s search key

v) Key size – the size of the search key
vi) Array of triples, one for each contained object

(1) Insertion key
(2) Count of weak references
(3) Key value – the search key

6) Weak references are represented as follows
a) Tag – identifies the path from the root object to the property instance containing the object that is the target of

this weak reference
b) Key property id
c) Key size
d) Key value

7) Vectors and sets of weak references are represented as follows.
a) Count of referenced objects
b) Tag – identifies the path from the root object to the property instance containing the object that is the target of

this weak reference
c) Key property id
d) Key size
e) Array of key values one for each referenced object

8) Media data is stored in a sub-IStream. The name of the IStream is given by the “flat” value in the “properties”
IStream corresponding to the Media data stream’s entry in the "properties" IStream

9) There is one per-file data structure used for resolving weak references. This data structure is stored in an IStream
called “referenced properties” in the root IStorage. This stream consists of
a) Byte order
b) Count of entries
c) A sequence of null terminated lists of property ids. The first list is referenced using tag 0 and so on. Each list

is a path from the root object to a particular property instance.

 6

1.2 Data Structures
This section describes the data structures used to map objects on to structure storage. Note that these are not the actual
data structures, they are provided for illustrative purposes only.
1.2.1.1 Integral Types
These types, assumed to be defined appropriately for a particular host, are used in subsequent declarations.

typedef … OMUInt8;
typedef … OMUInt16;
typedef … OMUInt32;

1.2.1.2 Data Types
These types are used to define members of data structures.

typedef OMUInt8 OMByteOrder;
typedef OMUInt8 OMVersion;
typedef OMUInt16 OMPropertyCount;
typedef OMUInt16 OMPropertyId;
typedef OMUInt16 OMStoredForm;
typedef OMUInt16 OMPropertySize;
typedef OMUInt8 OMKeySize;
typedef OMUInt16 OMPropertyTag;

1.2.1.3 Property Index

1.2.1.3.1 Purpose
The property index is an index into the property values. Both the index and the values (“flat” values only) are stored in
a stream named “properties”.

1.2.1.3.2 External representation
An IStream called “properties” containing a PropertyIndexHeader followed by _entryCount
PropertyIndexEntry structs.

1.2.1.3.3 Structure of Property Index Header
A PropertyIndexHeader is defined as follows…

typedef struct PropertyIndexHeader {
OMByteOrder _byteOrder;
OMVersion _formatVersion;
OMPropertyCount _entryCount;

} PropertyIndexHeader;

The _byteOrder is the byte order of
• the remaining fields of the PropertyIndexHeader struct
• the PropertyIndexEntry structs that follow
• the actual property data
The _formatVersion is version number of the stored format, this allows for otherwise incompatible changes to the
stored format.
The _entryCount is the number of PropertyIndexEntry structs that follow.

1.2.1.3.4 Structure of a Property Index Entry
typedef struct PropertyIndexEntry {
OMPropertyId _pid;
OMStoredForm _storedForm;

 7

OMPropertySize _length;
} PropertyIndexEntry;

The _pid is the id that describes the property. This is a shorthand version of the GUID that uniquely identifies the
property. Property ids are locally unique. For all predefined properties the property id is the same in all files. For user
defined extension properties the assigned property id may vary across files.
The _storedForm identifies the “type” of representation chosen for this property. This field describes how the “flat”
property value should be interpreted. Note that the stored form described here is not the data type of the property
value, rather it is the type of external representation employed. The data type of a given property value is implied by
the property ID. The actual data type of a property value may be determined by looking up the associated property id in
the dictionary.
The _length is the length, in bytes, of the property value in the property value stream.

1.2.1.4 Strong Object Reference

1.2.1.4.1 Purpose
A single contained object.

1.2.1.4.2 External Representation
Stored form SF_STRONG_OBJECT_REFERENCE
Property value Name of object

1.2.1.5 Strong Object Reference Vector

1.2.1.5.1 Purpose
An ordered collection of strongly referenced (contained) objects.

1.2.1.5.2 External Representation
Stored form SF_STRONG_OBJECT_REFERENCE_VECTOR
Property value Name of vector
Set index name <name of vector> index
Set element name <name of vector>{<local key of element>}

Each vector index consists of a StrongReferenceVectorIndexHeader followed by _entryCount
StrongReferenceVectorIndexEntry structs.

1.2.1.5.3 Structure of a Strong Object Reference Vector Index Header
A StrongReferenceVectorIndexHeader is defined as follows…

typedef struct StrongReferenceVectorIndexHeader {
OMUInt32 _entryCount;
OMUInt32 _firstFreeKey;
OMUInt32 _lastFreeKey;

} StrongReferenceVectorIndexHeader;

The _entryCount is the number of VectorIndexEntry structs that follow.
The _firstFreeKey is the next local key that will be assigned in this vector.
The _lastFreeKey is the highest unassigned key above _firstFreeKey. The keys between _firstFreeKey
and _lastFreeKey are unassigned, while there may be other gaps in key assignement this represents the largest one.

1.2.1.5.4 Structure of a Strong Object Reference Vector Index Entry
typedef struct StrongReferenceVectorIndexEntry {
OMUInt32 _localKey;

 8

} StrongReferenceVectorIndexEntry;

The _localKey uniquely identifies this strong reference within this collection independently of its position within
this collection. The _localKey is used to form the name assigned to the element in this vector at the corresponding
ordinal position. That is, the _localKey of the first StrongReferenceVectorIndexEntry is used to form the
name of the first element in the vector and so on. The _localKey is an insertion key.

1.2.1.6 Strong Object Reference Sets

1.2.1.6.1 Purpose
An unordered collection of strongly referenced (contained) uniquely identified objects, each of which can be
• efficiently located by key - O(lg N)
• the target of a weak reference

1.2.1.6.2 External Representation
Search key Obtained from "object->identifier()"
Stored form SF_STRONG_OBJECT_REFERENCE_SET
Property value Name of set
Set index name <name of set> index
Set element name <name of set>{<local key of element>}

Each set index consists of a StrongReferenceSetIndexHeader followed by _entryCount
StronReferenceSetIndexEntry structs.

1.2.1.6.3 Structure of a Strong Object Reference Set Index Header
typedef struct StrongReferenceSetIndexHeader {
OMUInt32 _entryCount;
OMUInt32 _firstFreeKey;
OMUInt32 _lastFreeKey;
OMPropertyId _identificationPid;
OMKeySize _identificationSize;

} StrongReferenceSetIndexHeader;

The _identification field of StronReferenceSetIndexEntry is the value of the property on the
contained objects with property id _identificationPid. Each _identification in the
StrongReferenceSetIndexEntry structs that follows is _identificationSize bytes in size.

1.2.1.6.4 Structure of a Strong Object Reference Set Index Entry
typedef struct StrongReferenceSetIndexEntry {
OMUInt32 _localKey;
OMUInt32 _referenceCount;
<variable> _identification;

} StrongReferenceSetIndexEntry;

The _referenceCount is the count of weak references to this object. The type of the _identification field
varies from one instance of a StrongReferenceSet to another. The value of the _identification field uniquely
identifies this object within the set. It is the search key.

StrongReferenceSetIndexEntry structs appear in the index in order of increasing key. If an application consuming the
set index wishes to construct a binary search tree, care must be taken not to invoke the worst case performance by
inserting the keys in order. One way to avoid this problem is to insert the keys in “binary search” order. That is the
middle key is inserted first then (recursively) all the keys below the middle key followed by (recursively) all the keys
above the middle key.

 9

1.2.1.7 Weak Object Reference

1.2.1.7.1 Purpose
A weak object reference is a persistent data type that denotes a weak reference to a uniquely identified object. In
memory, weak references are similar to pointers. When persisted, weak references contain the unique identifier of the
referenced object.

1.2.1.7.2 External representation
Stored form SF_WEAK_OBJECT_REFERENCE

1.2.1.7.3 Structure of a Weak Object Reference
typedef struct WeakObjectReference {
OMPropertyTag _referencedPropertyIndex;
OMPropertyId _identificationPid;
OMKeySize _identificationSize;
<variable> _identification;

} WeakObjectReference;

The _referencedPropertyIndex is the index into the referenced property table of the path to the property (a
strong reference set) containing the referenced object. The type of the _identification field varies from one
instance of a WeakObjectReference to another. The _identification field uniquely identifies the object
within the target set.

1.2.1.8 Weak Object Reference Vector

1.2.1.8.1 Purpose
An ordered collection of weak references.

1.2.1.8.2 External representation
Stored Form SF_WEAK_OBJECT_REFERENCE_VECTOR
Property value Name of vector
Vector index name <name of vector> index

1.2.1.8.3 Structure of a Weak Reference Vector Index Header

typedef struct WeakReferenceVectorIndexHeader {
OMUInt32 _entryCount;
OMPropertyTag _referencedPropertyIndex;
OMPropertyId _identificationPid;
OMKeySize _identificationSize;

} WeakReferenceVectorIndexHeader;

1.2.1.8.4 Structure of a Weak Object Reference Vector Index Entry

typedef struct WeakReferenceVectorIndexEntry {
<variable> _identification;

} WeakReferenceVectorIndexEntry;

1.2.1.9 Weak Object Reference Set

1.2.1.9.1 Purpose
An unordered collection of weakly referenced (not contained) uniquely identified objects, each of which can be
• efficiently located by key - O(lg N)

 10

1.2.1.9.2 External Representation
Search key Obtained from "object->identifier()"
Stored form SF_WEAK_OBJECT_REFERENCE_SET
Property value Name of set
Set index name <name of set> index

1.2.1.9.3 Structure of a Weak Object Reference Set Index Header

typedef struct WeakReferenceSetIndexHeader {
... same as WeakReferenceVectorIndexHeader ...

} WeakReferenceSetIndexHeader;

1.2.1.9.4 Structure of a Weak Object Reference Set Index Entry

typedef struct WeakReferenceSetIndexEntry {
... same as WeakReferenceVectorIndexEntry ...

} WeakReferenceSetIndexEntry;

1.2.1.10 Media Data

1.2.1.10.1 Purpose
Storing embedded media. Also used to store other large variably sized information such as timecode.

1.2.1.10.2 External Representation
Stored form SF_DATA_STREAM
Property value Name of stream

1.2.1.11 The Referenced-Properties Table
A weak object reference references an object in a particular strong reference set property instance. Property instances
are represented by a null terminated list of property ids. The list is the path from the root object to the property instance.
In order to avoid storing the path to the referenced property in each weak reference the path is stored once, in the
referenced-properties table, and the index of the path in the table is stored in the weak reference. This index is also
called a tag.
There is one referenced-properties table in each AAF file. The referenced-properties table is a stream called
“/referenced properties”. The stream consists of a header followed by a sequence of null terminated property
id lists similar to a string space.

1.2.1.12 The Referenced-Properties Table Header
typedef struct ReferencedPropertiesTableHeader {
OMByteOrder _byteOrder;
OMPropertyCount _pathCount;
OMUInt32 _pidCount;

} ReferencedPropertiesTableHeader;

The _pathCount field holds the number of referenced-properties in the table. Each reference property is stored as a
property path – a null-terminated list of property ids. The _pidCount field is the total number of property ids that
follow, including null terminators. The first property path in the list has a referenced property index (tag) of 0 and so
on.

1.3 Storage and Stream Naming
[TBS]

1.4 Stored Forms

 11

This section describes the stored form bit assignments.

1.4.1 Assignments

 bit(s) Value
15..8 Not used, must be 0
7..6 00 = object reference
 01 = stream
 10 = fixed size data
 11 = variable size data
5 0 = weak
 1 = strong
4 0 = singleton
 1 = collection
3 0 = vector
 1 = set
2 0 = not a unique object identification (set or search key)
 1 = a unique object identification (set or search key)
1 0 = opaque (not understood or interpreted by the Object Manager)
 1 = transparent (understood and interpreted by the Object Manager)
0 0 = not a stored object identification ("CLSID")
 1 = a stored object identification ("CLSID")

1.4.1.1 Notes

1) Not all combinations are valid

a) bit 5 is only examined if bits 7..6 == 00
b) bit 3 is only examined if bit 4 == 1

2) Not all valid combinations are currently used/implemented

1.4.2 Currently Defined Values

Stored form name Value Value Used
SF_DATA 10.x.x.x.x.1.0 82 y
SF_DATA_STREAM 01.x.x.x.x.1.0 42 y
SF_STRONG_OBJECT_REFERENCE 00.1.0.x.x.1.0 22 y
SF_STRONG_OBJECT_REFERENCE_VECTOR 00.1.1.0.x.1.0 32 y
SF_STRONG_OBJECT_REFERENCE_SET 00.1.1.1.x.1.0 3A y
SF_WEAK_OBJECT_REFERENCE 00.0.0.x.x.1.0 02 y
SF_WEAK_OBJECT_REFERENCE_VECTOR 00.0.1.0.x.1.0 12 y
SF_WEAK_OBJECT_REFERENCE_SET 00.0.1.1.x.1.0 1A y
SF_WEAK_OBJECT_REFERENCE_STORED_OBJECT_ID 00.0.0.x.x.1.1 03 n [1]
SF_UNIQUE_OBJECT_ID 10.x.x.x.1.1.0 86 n [2]
SF_OPAQUE_STREAM 01.x.x.x.x.0.0 40 n [3]

1.4.2.1 Key
x = no meaning, must be zero
y = currently used in the reference implementation
n = not currently used in the reference implementation

 12

1.4.2.2 Notes

[1] = Would allow the stored object id (stored in the CLSID field of the IStorage) to be treated as a weak reference.

[2] = Would allows unique identifiers to be stored only in the set index instead of both in the set index and a property
value.
 [3] = Would allow maintaining a rule that all storage elements in a file are part of an OMStorable while allowing
"extra" storage elements such as the "SummaryInformation" stream.

Even though only 1 byte is needed, OMStoredForm is 2 bytes in size in order to keep each property index entry an even
number of bytes in size.

Consumers must ignore index entries that they don't understand. For unknown values of _storedForm, _length is
guaranteed to be valid, the bytes cannot be interpreted correctly, however they can be skipped.

1.4.3 Representations by Stored Form

Stored form name “flat” value “deep” value
SF_DATA Data None
SF_DATA_STREAM Byte order, Stream name IStream containing data
SF_STRONG_OBJECT_REFERENCE Object name IStorage containing object
SF_STRONG_OBJECT_REFERENCE_VECTOR Vector name IStream containing index,

one IStorage per object
SF_STRONG_OBJECT_REFERENCE_SET Set name IStream containing index,

one IStorage per object
SF_WEAK_OBJECT_REFERENCE Tag, Key pid, Key size, Key None
SF_WEAK_OBJECT_REFERENCE_VECTOR Vector name IStream containing index
SF_WEAK_OBJECT_REFERENCE_SET Set name IStream containing index
SF_WEAK_OBJECT_REFERENCE_STORED_OBJECT_ID NYI NYI
SF_UNIQUE_OBJECT_ID NYI NYI
SF_OPAQUE_STREAM NYI NYI

1.5 Capacity Limits

1.5.1 PropertyIndexHeader and PropertyIndexEntry
There is one PropertyIndexHeader per object instance. There is one PropertyIndexEntry per property instance.

PropertyIndexHeader Field Name Field Size Capacity
 _byteOrder 1 'L' (little endian) or 'B' (big endian)
 _formatVersion 1 256 different revisions to the file format
 _entryCount 2 64k properties per object instance
 Total 4

PropertyIndexEntry Field Name Field Size Capacity
 _pid 2 64k different property definitions per file
 _storedForm 2 64k different ways to store a property value
 _length 2 64k bytes of data per simple property
 Total 6

The capacity limits above apply only to simple property data. They do not apply to

 13

1. streamed data such as media data (essence) and time code.
2. referenced or contained objects (singleton, vector or set)

 The design allows 64k properties per object each property may be up to 64k bytes in size. That's a theoretical limit of
4096 M per object.

The design omits an _offset field from the PropertyIndexEntry and requires property values to be contiguous within the
“properties” stream. This restriction could be relaxed later by assigning a _storedForm bit value to mean "unallocated
and available for use".

1.5.2 Other fields

Field Field Size Capacity
_entryCount 4 Maximum of approximately 4 Gazillion elements in any

strong/weak reference set/vector. This seems too much but it is a
theoretical limit. Note that our design goal of 100,000 Mobs
means that 2 bytes would be too small here. This field occurs
once per collection (strong/weak reference set/vector).

_identificationSize 1 Maximum key (unique identifier) size of approximately 256
bytes. We currently have GUIDs that are 16 bytes and UMIDs
that are 32 bytes. This field occurs once on each strong reference
set, weak reference singleton, weak reference vector and weak
reference set.

_referenceCount 4 Maximum of approximately 4 G different weak references to a
given object. This field occurs on each element of a strong
reference set. 0xffffffff == this object is sticky.

_referencedPropertyIndex 2 Maximum of approximately 64 k strong reference sets each
containing weakly referenced objects. This field occurs once on
each weak reference singleton, weak reference vector and weak
reference set. It identifies the set in which the target of the weak
reference(s) resides.

_localKey 4 The _localKey is the insertion key. This field is the same size as
the _entryCount field.

1.6 File Signatures
The file signature is stored as the CLSID of the Root IStorage.
Two signatures are used for AAF StructuredStorages files, one for StructuredStorages with 512 byte sector size, the
other for 4096 byte sector size.
Name Value
aafSignature_Aaf_SSBinary {0x42464141, 0x000d, 0x4d4f,

{0x06, 0x0e, 0x2b, 0x34, 0x01, 0x01, 0x01, 0xff}}
aafSignature_Aaf_SSBin_4K {0x0d010201, 0x0200, 0x0000,

{0x06, 0x0e, 0x2b, 0x34, 0x03, 0x02, 0x01, 0x01}}

	Mapping of Objects to Structured Storage
	Overview
	Data Structures
	
	Integral Types
	Data Types
	Property Index
	Purpose
	External representation
	Structure of Property Index Header
	Structure of a Property Index Entry

	Strong Object Reference
	Purpose
	External Representation

	Strong Object Reference Vector
	Purpose
	External Representation
	Structure of a Strong Object Reference Vector Index Header
	Structure of a Strong Object Reference Vector Index Entry

	Strong Object Reference Sets
	Purpose
	External Representation
	Structure of a Strong Object Reference Set Index Header
	Structure of a Strong Object Reference Set Index Entry

	Weak Object Reference
	Purpose
	External representation
	Structure of a Weak Object Reference

	Weak Object Reference Vector
	Purpose
	External representation
	Structure of a Weak Reference Vector Index Header
	Structure of a Weak Object Reference Vector Index Entry

	Weak Object Reference Set
	Purpose
	External Representation
	Structure of a Weak Object Reference Set Index Header
	Structure of a Weak Object Reference Set Index Entry

	Media Data
	Purpose
	External Representation

	The Referenced-Properties Table
	The Referenced-Properties Table Header

	Storage and Stream Naming
	Stored Forms
	Assignments
	Notes

	Currently Defined Values
	Key
	Notes

	Representations by Stored Form

	Capacity Limits
	PropertyIndexHeader and PropertyIndexEntry
	Other fields

	File Signatures

