

Copyright © 2004 AAF Association
NOTES – The user’s attention is called to the possibility that implementation and compliance with this specification may require use of
subject matter covered by patent rights. By publication of this specification, no position is taken with respect to the existence or validity of
any claim or of any patent rights in connection therewith. The AAFA, including the AAFA Board of Directors, shall not be responsible for
identifying patents for which a license may be required by an AAF specification or for conducting inquiries into the legal validity or scope of
those patents that are brought to its attention.

2005-04-08

AAF ASSOCIATION SPECIFICATION

 Advanced Authoring Format (AAF)
 Object Specification v1.1

Page 1 of 136 pages

Table of Contents
1 Scope ... 4
2 Normative References ... 4
3 Definition of Acronyms, Terms and Notation ... 5

3.1 Acronyms and Terms.. 5
3.2 Notation... 6

4 Introduction .. 7
4.1 Object Oriented Interchange... 7
4.2 Header Object... 8
4.3 Mobs ... 8
4.4 MobSlots ... 10
4.5 Components.. 11
4.6 References between Mobs ... 11
4.7 File SourceMobs and EssenceData objects... 13
4.8 Static Image Essence in Mobs ... 13
4.9 Time-varying Video and Audio Essence in Mobs ... 14
4.10 Event Data in Mobs.. 16

5 AAF Class Hierarchy.. 17
5.1 Object model goals ... 18
5.2 Classes and semantic rules.. 18
5.3 Class Hierarchy... 19

6 InterchangeObject Classes.. 24
6.1 InterchangeObject class ... 26
6.2 Header class ... 26
6.3 Identification class... 28
6.4 Dictionary class... 29
6.5 ContentStorage class.. 30
6.6 Mob class.. 30
6.7 CompositionMob class.. 32
6.8 MasterMob class... 32
6.9 SourceMob class .. 33

http://www.aafassociation.org/

AAF Object Specification 1.1

Page 2 of 136 pages

6.10 MobSlot class... 34
6.11 TimelineMobSlot class ... 34
6.12 EventMobSlot class ... 36
6.13 StaticMobSlot class.. 36
6.14 KLVData class.. 37
6.15 TaggedValue class .. 37
6.16 Parameter class ... 38
6.17 ConstantValue class .. 38
6.18 VaryingValue class .. 39
6.19 ControlPoint class .. 40
6.20 Locator class.. 41
6.21 NetworkLocator class... 41
6.22 TextLocator class... 42
6.23 DescriptiveFramework class .. 42

7 Component Classes... 43
7.1 Component class .. 44
7.2 Transition class ... 45
7.3 Segment class .. 46
7.4 Sequence class... 47
7.5 Filler class ... 48
7.6 SourceReference class... 48
7.7 SourceClip class ... 50
7.8 Event class.. 51
7.9 CommentMarker class.. 51
7.10 DescriptiveMarker class... 52
7.11 GPITrigger class .. 52
7.12 Timecode class .. 53
7.13 TimecodeStream class .. 54
7.14 TimecodeStream12M class ... 54
7.15 Edgecode class.. 55
7.16 Pulldown class ... 55
7.17 OperationGroup class .. 56
7.18 NestedScope class .. 57
7.19 ScopeReference class ... 58
7.20 Selector class... 59
7.21 EssenceGroup class .. 60

8 DefinitionObject Classes .. 61
8.1 DefinitionObject class ... 62
8.2 DataDefinition class .. 62
8.3 ContainerDefinition class .. 63
8.4 OperationDefinition class.. 63
8.5 ParameterDefinition class... 64
8.6 InterpolationDefinition class.. 65
8.7 CodecDefinition class ... 65
8.8 PluginDefinition class.. 66
8.9 TaggedValueDefinition class .. 68
8.10 KLVDataDefinition class .. 68

9 EssenceData Classes .. 69
9.1 EssenceData class ... 69

10 EssenceDescriptor Classes ... 70
10.1 EssenceDescriptor class.. 70
10.2 FileDescriptor class.. 71

 AAF Object Specification v1.1

 Page 3 of 136 pages

10.3 DigitalImageDescriptor class ... 72
10.4 CDCIDescriptor class... 77
10.5 RGBADescriptor class ... 78
10.6 TapeDescriptor class ... 79
10.7 FilmDescriptor class... 80

11 Non-normative Essence Types .. 81
11.1 WAVEDescriptor class... 81
11.2 AIFCDescriptor class ... 82
11.3 TIFFDescriptor class (optional).. 82

12 Compressed Picture Essence Types ... 84
13 Sound Essence Types.. 84

13.1 SoundDescriptor class ... 84
13.2 PCMDescriptor class ... 85

14 Multiplexed Essence Types.. 87
15 Physical Essence Types... 87

15.1 PhysicalDescriptor class .. 87
15.2 ImportDescriptor class ... 88
15.3 RecordingDescriptor class ... 88
15.4 AuxiliaryDescriptor class.. 88

16 Reserved .. 89
17 Reserved .. 89
18 Reserved .. 89
19 Reserved .. 89
20 Operational Pattern identifiers.. 90

20.1 Operational Pattern identifiers ... 90
21 Built-In Types.. 90

21.1 Basic and Structured Types... 90
21.2 Enumerated Types... 91

22 Built-In Data Definitions .. 95
22.1 Built-In Data Definitions ... 95

23 Built-In Extensible Enumerations ... 95
23.1 Built-In Extensible Enumerations... 95

24 Built-In OperationDefinitions... 97
25 Tutorial on Compositions.. 97

25.1 Composition Mob Basics ... 97
25.2 TimelineMobSlots .. 98
25.3 Sequences ... 99
25.4 Transitions.. 99
25.5 StaticMobSlots ... 102
25.6 Combining Different Types of Slots ... 103
25.7 Operations.. 104
25.8 Scope and References .. 106
25.9 Other Composition Mob Features.. 107

26 Tutorial on Describing Essence.. 108

AAF Object Specification 1.1

Page 4 of 136 pages

26.1 Overview of Essence ... 108
26.2 Describing Essence with MasterMobs... 109
26.3 Describing Essence with SourceMobs .. 110
26.4 Describing Essence Format with Essence Descriptors ... 111

27 Meta-Classes.. 121
27.1 MetaDefinition class... 121
27.2 ClassDefinition class.. 121
27.3 PropertyDefinition class ... 122
27.4 TypeDefinition class... 123
27.5 TypeDefinitionCharacter class ... 123
27.6 TypeDefinitionEnumeration class .. 124
27.7 TypeDefinitionExtendibleEnumeration class ... 124
27.8 TypeDefinitionFixedArray class ... 125
27.9 TypeDefinitionIndirect class ... 125
27.10 TypeDefinitionInteger class.. 126
27.11 TypeDefinitionOpaque class .. 126
27.12 TypeDefinitionRecord class ... 127
27.13 TypeDefinitionRename class ... 127
27.14 TypeDefinitionSet class ... 128
27.15 TypeDefinitionStream class ... 128
27.16 TypeDefinitionString class ... 128
27.17 TypeDefinitionStrongObjectReference class ... 129
27.18 TypeDefinitionVariableArray class... 130
27.19 TypeDefinitionWeakObjectReference class .. 130
27.20 MetaDictionary class.. 131

28 Extensions .. 131
28.1 Overview of Extending AAF... 131
28.2 Defining New Effects.. 132
28.3 Defining New Classes.. 133
28.4 Defining New Properties .. 133
28.5 Defining New Essence Types.. 133
28.6 Tracking Changes with Generation ... 134

29 Bibliography.. 136

1 Scope
This document defines the data structures used by the Advanced Authoring Format (AAF) for the interchange of
audio-visual material and associated metadata. The data structures are defined using a class model, in terms
that closely correspond to the authoring domain. The mapping of these data structures into a file (or other
persistent storage) is defined by other AAF Association specifications.

2 Normative References
The following normative documents contain provisions that, through reference in this text, constitute provisions
of this Document. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties to agreements based on this document are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated below. For undated
references, the latest edition of the normative documents referred to applies.

SMPTE 298M – 1997, Television – Universal Labels for Unique Identification of Digital Data

SMPTE RP210 – Metadata Dictionary Contents

 AAF Object Specification v1.1

 Page 5 of 136 pages

ISO/IEC 11578-1 – 1998, Information technology – Open Systems Interconnection – Remote Procedure Call
(RPC) Annex A, Universally Unique Identifier

SMPTE RP224, SMPTE Labels Registry

IETF RFC 1738 – Uniform Resource Locators (URL)

IETF RFC 2396 – Uniform Resource Identifiers (URI)

ITU-R Recommendation BS.1196 (1995) (annex 2): "Audio coding for digital terrestrial television broadcasting"

SMPTE 320M – Channel Assignments and Levels on Multichannel Audio Media

IETF RFC 2046 – MIME Part Two: Media Types

IETF RFC 2048 – MIME Part Four: Registration Procedures

EBU Tech 3285-2001 Specification of the Broadcast Wave Format, A format for audio data files in
broadcasting: Version 1

EBU Tech 3285 Supplement 3-2001 Specification of the Broadcast Wave Format, A format for audio data files
in broadcasting: Supplement 3: Specification of the Peak Envelope Chunk

ETSI TS 102 154 – Digital Video Broadcasting (DVB); Implementation guidelines for the use of Video and
Audio Coding in Contribution and Primary Distribution Applications based on the MPEG-2 Transport Stream
Tech 3285 Supplement 3-2001 Specification of the Broadcast Wave Format, A format for audio data files

3 Definition of Acronyms, Terms and Notation

3.1 Acronyms and Terms

Abstract class A class that is not sufficient to define an object; an object must also belong to a
concrete sub-class of the abstract class

AUID A 16-byte unique identifier whose value is a SMPTE 298M Universal Label or a UUID
or GUID.

CDCI Color Difference Component Image

Class Category of objects, which have common properties, relationships and semantics

Class hierarchy Specification of the sub-class and super-class relationship among a set of classes

Concrete class A class that is sufficient to define an object and may be instantiated as an object

Edit Rate A rational number that specifies the units used to specify the duration of Components
in a track; the edit rate is the number of units that equal one elapsed second. In a
track which describes essence, the Edit Rate is usually chosen to be the number of
Editable Units per second

Edit Unit A period of time equal to 1/(Edit Rate)

Editable Unit The smallest portion of essence which can be edited such as a field or frame.

Essence The video, audio and data streams to be contained and described by AAF.

AAF Object Specification 1.1

Page 6 of 136 pages

Inheritance The mechanism that defines a relationship between classes where a sub-class
inherits the properties, relationships, and semantics of its super-class

Interleaved-essence An essence format that combines two or more channels of audio or video data into a
single essence stream

Metadata The description of essence or information on how to use the essence

Mob An object that specifies the metadata for a piece of material and has a globally unique
identity

MobID The value of the unique identification of a Mob

Object An instance of a class

Package An alternative term for Mob used in MXF

RGBA Red Green Blue Alpha

Sample Rate For audio: The sample rate of the essence. For video: The field or frame rate of the
essence (not the pixel clock rate)

Strong reference A relationship between objects where one object is the owner of another object. An
object can be owned only by a single object at one time. A strong reference defines a
logical containment, where the owning object logically contains the owned object.

Sub-class A class that is defined as having the same properties, relationships and semantics as
another class, which is called its super-class, and may have additional properties,
relationships, and semantics that are not present in the super-class

Super-class A class that has another class as its sub-class

UML Unified Modeling Language

Unicode A form of character coding that allows a wide range of characters and ideograms to
represent most major languages.

Weak reference A relationship between objects where one object has a reference to a second object;
the second object is uniquely identified. In contrast with a strong reference, a weak
reference specifies an association relationship but does not specify ownership. An
object can be the target of weak references from more than one object.

3.2 Notation

The AAF Object Specification uses UML class diagrams to depict the class model. The UML class diagrams
show the class name, properties, property types, object references and inheritance relationships. Figure 1 below
provides a key to the UML class diagrams used in the AAF Object Specification.

 AAF Object Specification v1.1

 Page 7 of 136 pages

Class4

Class3

Property5

Property4

Abstract class has
italicised name

Concrete class has
non-italicised name

Class2 inherits from Class1
Class 1 is a super- or parent class

Class2 is a sub-class

Property typesProperties

Weak reference to
Class4 object

Strong reference to
Class3 object

Class1

Class2

Property1 : Type1
Property2 : Type2
Property3 : Type3

Class5

Class6

Class7

Class10

Class9

Class8
0..* {ordered}

1..*

0..* {set}0..* {set}

1..* {ordered}

Property10Property6

Property8

Property7 Property9

Strong reference set of
Class10 objects, 0 or many
objects in set

Weak reference set of
Class6 objects, 0 or many

objects in set

Strong reference vector of
Class9 objects, 1 or many
objects in vector, order is
not meaningful

Weak reference vector of
Class7 objects, 1 or many
objects in vector, order is

meaningful

Strong reference vector of
Class8 objects, 0 or many
objects in vector, order is
meaningful

Figure 1 Key to UML class diagrams used in the AAF Object Specification

4 Introduction

4.1 Object Oriented Interchange

The Advanced Authoring Format provides an object-oriented mechanism to interchange multimedia information.

Object-oriented interchange has the following advantages:

• Objects provide a framework for containing and labelling different kinds of information

• Objects make it possible to treat different items in the same way for attributes they share.

AAF Object Specification 1.1

Page 8 of 136 pages

• When the information becomes very complex, objects provide a mechanism to describe it in a structured
way.

4.2 Header Object

An interchange file contains:

• A MetaDictionary defining the classes used in the AAF file

• One Header object and its related objects

• Mobs and the objects they have

• Essence data

The Header object and its related objects are in an interchange file so that Mobs and Essence data, which
contain the useful information, may be accessed.

Each object in an interchange file belongs to a class. The class defines how the object may be used and the
kind of information it stores. An object consists of a set of properties. Each property has a name, a type, and a
value. An object's class defines the properties that it may have.

This specification defines classes using a class hierarchy, in which a subclass inherits the properties of its
superclass. All classes are subclasses of the InterchangeObject class, except for the classes contained in the
MetaDictionary which are subclasses of MetaDefinition.

There is exactly one Header object in an interchange file. The Header object owns all other objects in the file.
This ownership relationship is specified by the StrongReference, StrongReferenceVector, and
StrongReferenceSet property types.

The objects contained in an AAF file are depicted in Figure 2 below:

AAF file

MetaDictionary

Header

ContentStorage

Dictionary

Identification EssenceData

Mob

Contains the class
model of the objects
being interchanged

Each Identification contains
a record of an application

used to create or modify the
objects being interchanged

Contains definitions of
material data types,

containers, codecs, effects &
plug-ins used by the material

Contains the material

Each EssenceData
contains the essence for a
piece of file source material

Each Mob contains the
metadata for a piece of
material. Mob = Material
Object.

Contains the objects
being interchanged

Figure 2 Objects contained in an AAF file

4.3 Mobs

A Mob is an object that has a universal identifier and consists of metadata. Mobs describe how essence data is
formatted or how separate pieces of essence data are combined or composed. Mobs are very general and can
be used to describe many different kinds of essence data: video, sound, still picture, text, animation, graphics,
and other formats.

Mobs have names and descriptions, but are primarily identified by a unique identifier, which is called a MobID.

 AAF Object Specification v1.1

 Page 9 of 136 pages

A Mob can describe more than one kind of essence. For example, a Mob can have audio, video, still image, and
timecode data. A Mob has one or more Slots. Each Slot can describe only one kind of essence data. For
example, a Mob can have two Slots with audio, one Slot with video, three Slots with still images, and two Slots
with timecode.

Kind of Mob Function
CompositionMob Describes creative decisions on how to combine or modify essence:

 Decisions on order of essence data
 Decisions on placement of essence data

 Decisions on effects that modify or combine essence data
MasterMob Collect and possibly synchronize related essence data; provides indirect access to essence data, which is independent of

storage details
File SourceMob Provides direct access to and describes format of digital essence data that is (or can be) stored in a computer file

Physical
SourceMob

Describes physical media such as a videotape or film

CompositionMobs describe the creative editing and composing decisions that combine individual bits of essence
data into a presentation. A Composition Mob can describe creative decisions like the following:

• The audio track contains "Also Sprach Zarathustra" when the video track showed the monolith in the
Stanley Kubrick film 2001: A Space Odyssey

• The pacing of the cuts between shots in Alfred Hitchcock's thrillers

• How different still images are composed into a single image

• How a special effect distorts a video image to make it appear as if it were a reflection on a pool of water

MasterMobs provide an association between CompositionMobs, which describe the creative decisions, and
SourceMobs, which describe and identify the essence data. MasterMobs insulate the CompositionMob from the
detailed information about how the essence data is stored. MasterMobs can describe:

• How video and audio digital essence data are synchronized

• How multiple objects containing digital essence data represent different digital versions of the same
original essence data - the versions may be different in the amount of compression or in the kind of
format used to store it

File SourceMobs describe the format of the digital essence data and provide a mechanism to access the digital
essence data. File SourceMobs have information such as:

• The format used to store the digital essence data, such as WAVE and AIFC for audio and CDCI and
RGBA for video

• The number of samples or frames for digital audio and video data

• The kind of compression used

• The number of pixels and the aspect ratio for picture data

AAF Object Specification 1.1

Page 10 of 136 pages

Physical SourceMobs have descriptive information that makes it possible to identify the actual videotape or film.
They can also have timecode or edgecode information used to find the section of tape or film that corresponds
to a frame in the associated digital essence data.

4.3.1 Immutability of Mobs
A MobID is globally unique. Two Mobs in an AAF file shall not have the same MobID. A Mob in one AAF file may
have the same MobID as a Mob in another AAF file under either of the following conditions:

One Mob is a duplicate of the other

One Mob is a modified version of the other subject to the following restrictions on modifications. The type of Mob
determines the kind of modifications that can be made to it and still retain its identity:

• The information in a file SourceMob describing the format of essence is immutable and cannot be
modified. Modifications to a file SourceMob are limited to modifications to descriptive metadata and to
the following limited modifications when the essence is being created or derived:

• When creating essence or deriving one form of essence from another form, it may be necessary to
create or derive the essence in steps. In this case, the SourceMob can be modified to describe the
additional essence that is incorporated in a step. This should be done in a manner that does not
invalidate a reference to a section of the essence that was previously created.

• A MasterMob may be modified by replacing a reference to a SourceMob with a reference to another
SourceMob or it may be modified by inserting a reference to an alternate SourceMob. The modifications
are subject to the restriction that the replacement or alternate SourceMobs should be representations of
the same physical media as the originally referenced SourceMob.

• A CompositionMob may be modified in any way.

4.4 MobSlots

A Mob shall have one or more MobSlots. Each MobSlot describes an element of essence that can be
referenced. A MobSlot shall specify an integer identifier, which is called a SlotID.

Each kind of MobSlot defines a specific relationship between essence data and time. This specification currently
defines the following kinds of MobSlots:

• StaticMobSlot

• TimelineMobSlot

• EventMobSlot

A StaticMobSlot describes essence that does not vary over time. A StaticMobSlot may describe a static image
or some other static essence such as text.

A TimelineMobSlot describes essence that varies with a fixed, predictable interval or continuously over time. For
example, digital audio, video, and film have a fixed, predictable sample or frame rate, and analog audio varies
continuously over time.

An EventMobSlot describes essence that has an unpredictable relationship with respect to time. GPI (General
Purpose Interface) events and CommentMarkers are examples of irregularly timed events.

Kind of Slot Function
StaticMobSlot Describes essence data that has no specific relationship to time, such as static images or static text.

TimelineMobSlot Describes essence data that has a fixed or continuous relationship with time, such as audio, film, video, timecode, and edgecode
EventMobSlot Describes essence data that has an irregular relationship with respect to time, such as GPI events and Comment Markers

associated with specific times

 AAF Object Specification v1.1

 Page 11 of 136 pages

In a CompositionMob or MasterMob, PhysicalTrackNumber is the output channel number that the MobSlot
should be routed to when played. In a SourceMob, PhysicalTrackNumber is the track number within the source
that the MobSlot is describing.
Informative note: Typically, for each kind of essence data definition within a Mob, PhysicalTrackNumber starts at 1 and
counts up. For audio tracks, the value of PhysicalTrackNumber may be repeated by more than one track.

4.5 Components

Components are essence elements. A component in a TimelineMobSlot has a duration expressed in edit units.
The relation between edit units and clock time is determined by the edit rate of the TimelineMobSlot that has the
component. A component provides a value for each edit unit of its duration.

The kind of value a component provides is determined by the component’s data kind. A component can have a
data kind that corresponds to a basic kind of essence, such as sound or picture or a kind of metadata such as
timecode.

The Component class has two subclasses: Segment and Transition.

The Segment class subclasses include the following:

• SourceClip which references a section of a Slot in another Mob; for example a SourceClip in a
TimelineMobSlot can describe video data

• Sequence which specifies that its set components are arranged in a sequential order; in a
TimelineMobSlot, the components are arranged in sequential time order

• OperationGroup which specifies that either two or more Segments should be combined using a
specified effect or that one Segment should be modified using a specified effect

• Filler which defines an unspecified value for its duration

A Transition causes the preceding and following Segments to be overlapped in time and to be combined by the
Transition’s effect. A Transition object shall be a member of a Sequence’s set of Components and it shall be
preceded by a Segment and followed by a Segment.

4.6 References between Mobs

A Mob can reference another Mob to indicate the source or derivation of the essence. A Mob refers to another
Mob by having a SourceClip object. A SourceClip object has a weak reference to a Mob using its identifying
MobID value; shall identify a MobSlot within the referenced Mob with a SlotID value; and when referencing a
TimelineMobSlot shall specify an offset in time within the referenced TimelineMobSlot.

SourceClips in CompositionMobs specify the MobID of the MasterMob, and are used to represent pieces of
digital essence data. The MasterMob provides a level of indirection between the digital essence data and the
objects that refer to them.

SourceClips in File SourceMobs specify the MobID of a Physical SourceMob. For example, a video File
SourceMob has a SourceClip that specifies the Physical SourceMob describing a videotape used to generate
the digital video data.

SourceClips in Physical SourceMobs identify the MobID of a previous physical source of physical media. For
example, a videotape SourceMob has a SourceClip that specifies the Physical SourceMob describing the film
that was used to generate the videotape.

If there is no previous generation of essence, then the SourceMob shall contain a SourceClip that specifies a
SourceID value of 0, a SourceSlotID value of 0, and, in TimelineSlots, a StartTime value of 0.

In summary, Mobs describe not only essence data, but through their relationships between one another, they
describe how one form of essence data was derived from another.

AAF Object Specification 1.1

Page 12 of 136 pages

Figure 3 below illustrates how a SourceClip in a CompositionMob references a MasterMob. The MasterMob
references the File SourceMob, which references the tape SourceMob. Finally, the tape SourceMob references
the film SourceMob.

ContentStorage

Master
Mob

File Source
Mob

Tape Source
Mob

EssenceData EssenceData

SourceClip

SourceClip

SourceClip

CompositionMob

Timeline
MobSlot

Timeline
MobSlot

Sequence

Sequence

SourceClip
SourceClip

SourceClip

Film Source
Mob

EssenceData EssenceData

Figure 3 References between Mobs

 AAF Object Specification v1.1

 Page 13 of 136 pages

4.7 File SourceMobs and EssenceData objects

A File SourceMob describes essence and is used to access it, but does not own it. This document separates the
description and the storage of the essence for the following reasons:

• Audio and video data and other essence can be very large and may need to be stored in a separate file,
on a different disk, over a network, or temporarily deleted to free disk space. Having the File SourceMob
separate from the essence provides more flexible storage options while still allowing the composition to
use the same access mechanism.

• Audio and video data or other essence may be used in more than one CompositionMob and these
CompositionMobs can be in different files. Separating the File SourceMob from the essence means that
only the information in the File SourceMob needs to be duplicated.

The essence described by a File SourceMob can be stored in three ways:

• In an EssenceData object in the same file as the SourceMob

• In an EssenceData object in a different file, which must contain a duplicate of the SourceMob

• In a data file that is not a wrapper file

The MobID connects the File SourceMob to the essence if it is stored in an EssenceData object. The File
SourceMob and its corresponding EssenceData object have the same MobID value. Since the ContentStorage
object has all the Mobs and EssenceData objects in the file, applications can find the EssenceData object
associated with a File SourceMob by searching for the appropriate MobID.

If the essence is stored in a data file that is not a wrapper file, then the data file is identified by locators in the
essence descriptor. In some cases, the data file format has a mechanism to store a MobID. In these cases,
applications can still use the MobID to associate the File SourceMob with the digital essence data. When there
is no mechanism to store a MobID with the digital essence data, interchange files use specialized locator objects
to associate a File SourceMob with the digital essence data. If there is no MobID stored with this essence, it is
difficult to identify a data file if the file has been moved or renamed.

4.8 Static Image Essence in Mobs

Static image essence is described by a StaticMobSlot. Static image essence has no relation to time;
consequently, StaticMobSlots do not have an edit rate and the objects that they have do not specify a duration.

In a StaticMobSlot, a SourceClip refers to another StaticMobSlot by specifying its MobID and SlotID but does
not specify an offset in time or a duration as in a TimelineMobSlot.

Composition Mobs that have only StaticMobSlots specify the editing decisions involved in composing static
images. Figure 4 below illustrates a typical Composition Mob that describes a static image and the static
components used to compose it. The static images are combined by using static effects to transform the
individual images and to combine them into a single image.

AAF Object Specification 1.1

Page 14 of 136 pages

OperationGroup

Static Image Order Effect

SourceClip

OperationGroup

Transform Effect

OperationGroup

Transform Effect
SourceClip

SourceClip

SourceClip

Composition
Mob

StaticMob
Slot

InputSegments

Figure 4 A Static MobSlot in a CompositionMob

4.9 Time-varying Video and Audio Essence in Mobs

Audio and video essence data is represented in TimelineMobSlots. These are Slots that represent time-varying
data where this data has a fixed relationship with respect to time. For example, NTSC video has a frame rate of
approximately 29.97 frames per second. Each TimelineMobSlot specifies an edit rate which defines the unit of
time for objects referred to by that particular TimelineMobSlot. Edit rates are specified as a rational (a real
number expressed as two integers: a denominator and a numerator). For example, NTSC video's edit rate is
typically specified by an edit rate of 30000/1001.

In TimelineMobSlots, a SourceClip references a TimelineMobSlot in another Mob by specifying its MobID and
TimelineMobSlot ID number and by specifying a subsection of the TimelineMobSlot with an offset in time and a
duration. For example, a SourceClip in a composition Mob can reference a subsection of audio or video data by
referencing a section of that essence data's MasterMob.

A simple Composition Mob has audio and video TimelineMobSlots where each TimelineMobSlot has a
sequence of SourceClips. The sequence specifies that the SourceClips should be played consecutively, one
after another. Each TimelineMobSlot in the Composition Mob is to be played simultaneously with other co-timed
TimelineMobSlots.

The structure of a CompositionMob with TimelineMobSlots is shown in Figure 5 below.

 AAF Object Specification v1.1

 Page 15 of 136 pages

SourceClip

SourceClip

SourceClip

SourceClip

CompositionMob

Timeline
MobSlot

Timeline
MobSlot

Timeline
MobSlot

Sequence

Sequence

Sequence

SourceClip

SourceClip

SourceClip

SourceClip

Picture

Sound

Sound

Figure 5 TimelineMobSlots in a CompositionMob

Each SourceClip in a sequence identifies the audio or video data to be played and specifies its duration, but
does not specify the time at which it should be played in the composition. The starting time of a section in a
sequence depends on the number and duration of the sections that precede it. A SourceClip can be thought of
as a section of videotape or film to be spliced with other sections. By examining the section itself, one may listen
to its audio or view its frames, but one cannot tell where it will appear in the finished piece until the preceding
sections in the sequence are examined.

AAF Object Specification 1.1

Page 16 of 136 pages

Figure 6 below illustrates how the SourceClips in a sequence appear in a timeline view of a composition.

SourceClip

+Length : Length = 80

SourceClip

+Length : Length = 100

CompositionMob

Timeline
MobSlot

Sequence

+Length : Length = 305

SourceClip

+Length : Length = 125

SourceClip

Length : Length = 100

SourceClip

Length : Length = 125

SourceClip

Length : Length = 80

Timeline View
 0 .. .

Figure 6 Timeline View of a Sequence of SourceClips

4.10 Event Data in Mobs

Events typically specify an action or define a behavior that takes place at a specified time. Typically,
EventMobSlots specify events that are associated with the time-varying essence in a parallel TimelineMobSlot.
Each EventMobSlot describes one kind of event. Figure 7 below illustrates a Composition Mob that has a
TimelineMobSlot with video essence data, and an EventMobSlot that has comments defined for specific points
in time.

 AAF Object Specification v1.1

 Page 17 of 136 pages

CommentMarker

SourceClip

SourceClip

CompositionMob

Timeline
MobSlot

EventMob
Slot

Sequence

Sequence

SourceClip

SourceClip

CommentMarker

Figure 7 EventMobSlots in a CompositionMob

5 AAF Class Hierarchy
This chapter defines the AAF class hierarchy, which is used to describe multimedia compositions and data. A
class specifies an AAF object by defining what kind of information it may contain and how it is to be used. Each
AAF class inherits from its superclass. The AAF class hierarchy does not define any classes that inherit from
more than one immediate superclass thereby avoiding the problems associated with multiple inheritance.

An AAF object consists of a set of properties. A property consists of a property name, a property type, and a
property value.

Each class defines an object that has a set of properties. An object shall contain all the required properties of all
classes from which it inherits. There are two root classes in the AAF class hierarchy: the InterchangeObject
class and the MetaDefinition class.

The InterchangeObject class is the root for most of the classes in AAF including those for Mobs and Essence
Data. The InterchangeObject class defines one required property, the ObjClass property. An AAF object
specifies its class by the value of the ObjClass property. The InterchangeObject class and its subclasses

AAF Object Specification 1.1

Page 18 of 136 pages

defined by this specification may be extended by defining additional optional properties for existing classes or by
defining new subclasses.

The MetaDefinition class is the superclass of the ClassDefinition, PropertyDefinition, and TypeDefinition classes.
Since these classes provide the mechanism for describing and extending AAF classes, it is not possible to add
optional properties or define new subclasses to the MetaDefinition classes described in this document.

An AAF file shall contain the class model being used by the file in the MetaDictionary object’s ClassDefinitions
and TypeDefinitions properties.

This specification describes classes, property names, and property types by name, but classes, property names,
and property types are uniquely defined in an AAF file by an AUID.

These AUIDs are listed in the AAF reference implementation in the following files:

• AAFClassDefUIDs.h

• AAFPropertyDefs.h

• AAFTypeDefUIDs.h

AAF objects are stored in an AAF file using a structured container format. The AAF reference implementation
uses Microsoft’s Structured Storage as its container format, and implements an object management layer for
extended property set management.

5.1 Object model goals

Applications that process essence and metadata exist on a multitude of platforms, each with different
characteristics for storage capacity, throughput, multimedia hardware, and overall system architecture. This
document defines a format for the interchange of essence and metadata across applications and across
platforms.

This document provides a mechanism to encapsulate essence and metadata. It defines objects to store and
describe the essence that allow an application to determine the format of the essence and to determine what
conversions, if any, it needs to apply to the essence to process the essence.

This document provides a mechanism to synchronize essence and to describe the format of essence that
contains interleaved streams. This mechanism allows an application to synchronize separate streams of
essence that were originally derived from original media sources, such as film, audio tape, and videotape, that
were created in synchronization.

This document provides a mechanism to describe the derivation of essence from the original media sources.
This mechanism allows applications to reference tape timecode and film edgecode that correspond to the
essence and allows applications to regenerate essence from the original media sources.

This document provides a mechanism to describe compositions. Compositions contain information about how
sections of essence should be combined in sequence, how to synchronize parallel tracks of sequences, and
how to alter sections of essence or combine sections of essence by performing effects.

This document provides a mechanism to define new classes or to add optional information to existing classes.
This mechanism allows applications to store additional information in an interchange file without restricting the
interchange of the information specified by this document.

5.2 Classes and semantic rules

This document defines classes that specify the kinds of objects that can be included in a storage wrapper file
and it defines the semantic rules for including objects in a storage wrapper file.

An object consists of a set of properties. Each property has a property name, a property type, and a property
value. Each object belongs to a class that specifies the properties that it is required to have and optional
properties that it may have.

 AAF Object Specification v1.1

 Page 19 of 136 pages

This document defines classes by defining a class hierarchy and by defining the properties for each class in the
hierarchy. This document also defines a mechanism for extending the class hierarchy by defining new classes
that are subclasses of classes defined in this document.

An object shall have the required properties specified for all classes that it is a member of. An object may have
the optional properties specified for all classes that it is a member of. This specification lists the classes in the
class hierarchy and specifies the properties that are required and the properties that are optional for each class.
This specification also lists semantic rules, restrictions, and requirements on objects based on the object’s class
and the context in which the object is used.

The class of an object is specified by the ObjClass property of the InterchangeObject class.

5.3 Class Hierarchy

Figure 8 through Figure 12 illustrates the InterchangeObject class hierarchy and the class packages
incorporated in it. The classes in each figure are specified in succeeding chapters, with each chapter
corresponding to one figure.

Note that additional subclasses of any of the classes shown in these diagrams may be defined, as extension
classes or as new built-in classes in future versions of this specification.

Figure 15 illustrates the MetaDefinition class package.

AAF Object Specification 1.1

Page 20 of 136 pages

InterchangeObject

EssenceData

Mob

SourceMob

InterchangeObject

ParameterControlPoint

MasterMob

EssenceDescriptorComponent

DefinitionObject

CompositionMob

MobSlot

StaticMobSlotEventMobSlotTimelineMobSlot

KLVData TaggedValue

IdentificationDictionaryHeader ContentStorage

VaryingValueConstantValue

Locator

TextLocatorNetworkLocator

DescriptiveFramework

Figure 8 InterchangeObject Package

 AAF Object Specification v1.1

 Page 21 of 136 pages

Component

Transition Segment

SourceReference

SourceClip

FillerSequence

Event

CommentMarker

Component

TimecodeStream

Pulldown
TimecodeStream12M

ScopeReferenceNestedScopeOperationGroup

SelectorEssenceGroup

TimecodeEdgecode

GPITrigger

DescriptiveMarker

Figure 9 Component Package

AAF Object Specification 1.1

Page 22 of 136 pages

DefinitionObject

PluginDefinitionParameterDefinitionDataDefinition

DefinitionObject

CodecDefinitionOperationDefinition

InterpolationDefinitionContainerDefinition

KLVDataDefinition

TaggedValueDefinition

Figure 10 DefinitionObject Package

EssenceDescriptor

FilmDescriptorTapeDescriptorFileDescriptor

EssenceDescriptor

DigitalImageDescriptor Non-normative
essence types

CDCIDescriptor RGBADescriptor

Sound essence
types

Physical essence
types

Figure 11 EssenceDescriptor Package

TIFFDescriptorAIFCDescriptorWAVEDescriptor

Non-normative
essence types

FileDescriptor

Figure 12 Non-normative essence types Package

 AAF Object Specification v1.1

 Page 23 of 136 pages

PCMDescriptor

Sound essence
types

SoundDescriptor

Figure 13 Sound essence types Package

AuxiliaryDescriptorRecordingDescriptorImportDescriptor

Physical essence
types

PhysicalDescriptor

Figure 14 Physical essence types Package

AAF Object Specification 1.1

Page 24 of 136 pages

MetaDefinition

TypeDefinitionPropertyDefinitionClassDefinition

MetaDefinition

TypeDefinitionRenameTypeDefinitionInteger TypeDefinitionFixedArray

TypeDefinitionRecordTypeDefinitionCharacter TypeDefinitionVariableArray

TypeDefinitionStreamTypeDefinitionString TypeDefinitionSet

TypeDefinitionIndirectTypeDefinitionEnumeration TypeDefinitionStrongObjectReference

TypeDefinitionOpaque

TypeDefinitionExtendedEnumeration TypeDefinitionWeakObjectReference

Figure 15 MetaDefinition Package

In the Figures above, italic typeface identifies the classes in the class hierarchy that are abstract classes. An
object that belongs to an abstract class shall also belong to a subclass of the abstract class.

An object can be used in any context where an object of its class or one of its superclasses is allowed subject to
any restrictions listed in the class specification.

6 InterchangeObject Classes
This chapter includes the class specifications for classes in the InterchangeObject package. Figure 16 shows
the class hierarchy for the InterchangeObject package.

The class specification pages are presented in order according to the class hierarchy, reading the Figure left to
right, depth-first.

 AAF Object Specification v1.1

 Page 25 of 136 pages

InterchangeObject

EssenceData

Mob

SourceMob

InterchangeObject

ParameterControlPoint

MasterMob

EssenceDescriptorComponent

DefinitionObject

CompositionMob

MobSlot

StaticMobSlotEventMobSlotTimelineMobSlot

KLVData TaggedValue

IdentificationDictionaryHeader ContentStorage

VaryingValueConstantValue

Locator

TextLocatorNetworkLocator

DescriptiveFramework

Figure 16 InterchangeObject Package

AAF Object Specification 1.1

Page 26 of 136 pages

6.1 InterchangeObject class

The InterchangeObject class is a root class. All classes defined in an AAF file shall be sub-classes of
InterchangeObject with the exception of the MetaDefinition classes defined by this document.

The InterchangeObject class is an abstract class.

ClassDefinition

ObjClass

InterchangeObject
Generation: AUID

Property
Name Type Req

? Meaning

ObjClass WeakReference to
ClassDefinition

Req Identifies the class of the object

Generation AUID Opt Identifies when the object was created or last modified. If omitted, the object was created or last
modified in the first generation of the file.

Informative note: The Interchange object API in the AAF reference implementation (IAAFObject) is
used to control generation tracking. In the AAF reference implementation, generation tracking is

disabled by default.

6.2 Header class

The Header class provides file-wide information and indexes. An AAF file shall have exactly one Header object.

The Header class is a sub-class of InterchangeObject.

 AAF Object Specification v1.1

 Page 27 of 136 pages

InterchangeObject

Dictionary
ContentStorage

Identification

Content Dictionary

IdentificationList

1..* {ordered}

Header

ByteOrder : Int16
LastModified : Timestamp
Version : VersionType
ObjectModelVersion : UInt32
OperationalPattern : AUID
EssenceContainers : AUIDSet
DescriptiveSchemes : AUIDSet

Property Name Type Req
? Meaning Default

ByteOrder Int16 Req Specifies the byte order for the AAF file. One of the following:
’II’ Little-endian byte order
‘MM’ Big-endian byte order

LastModified TimeStamp Req Time and Date the file was last modified
Version VersionType Req Version number of the AAF Object Specification document that the file is

compatible with; shall be 1.0 or higher.

Content StrongReference to
ContentStorage

Req Has the ContentStorage object that has all Mobs and Essence Data in
the file

Dictionary StrongReference to Dictionary Req Has a Dictionary object that has the DefinitionObjects defined in the AAF
file

IdentificationList StrongReferenceVector of
Identification

Req Has an ordered set of Identification objects, which identify the application
that created or modified the AAF file

ObjectModelVersion UInt32 Opt The version of the persistent storage format for objects.
Automatically maintained

AAF
v1.0

OperationalPattern AUID Opt Specifies the Operational Pattern (or AAF Protocol) with which the AAF
file complies

EssenceContainers AUIDSet Opt An unordered set of AUIDs identifying the internal essence containers
used in the AAF file.

Automatically maintained

AAF Object Specification 1.1

Page 28 of 136 pages

Property Name Type Req
? Meaning Default

DescriptiveSchemes AUIDSet Opt An unordered set of AUIDs identifying the descriptive metadata schemes
used in the AAF file.

The ByteOrder property records the byte order of the computer platform on which the file was created.
Subsequent modification of the file may create objects with foreign byte order; the byte order of individual
modified objects shall be properly maintained by the storage format. In the big-endian byte order, the most-
significant byte is stored first (at the address specified, which is the lowest address of the series of bytes that
constitute the value). In the little-endian byte order, the least-significant byte is stored first. In both cases, bytes
are stored with the most-significant bit first.

6.3 Identification class

The Identification class provides information about the application that created or modified the file.

The Identification class is a sub-class of InterchangeObject.

All Identification objects in a file shall be included in the IdentificationList of the Header object.

InterchangeObject

Identification
CompanyName : String
ProductName : String
ProductVersion : ProductVersion
ProductionVersionString : String
ProductID : AUID
Date : TimeStamp
ToolkitVersion : ProductVersion
Platform : String
GenerationAUID : AUID

Property Name Type Req ? Meaning
CompanyName String Req Specifies the name of the company or organization that created the application
ProductName String Req Specifies the name of the application

ProductVersion ProductVersion Opt Specifies the version number of the application
ProductVersionString String Req Specifies the version number of the application in string form

ProductID AUID Req Identifies the application
Date TimeStamp Req Time and date the application created or modified the AAF file

ToolkitVersion ProductVersion Opt Specifies the version number of the SDK library
Platform String Opt Specifies the toolkit and the platform on which the application is running, e.g. “AAFSDK (Linux)”

GenerationAUID AUID Req AUID generated at the time the application created or opened for modification the file

 AAF Object Specification v1.1

 Page 29 of 136 pages

6.4 Dictionary class

The Dictionary class has DefinitionObject objects. An AAF file shall have exactly one Dictionary object.

The Dictionary class is a sub-class of InterchangeObject.

InterchangeObject

Dictionary

ContainerDefinition

OperationDefinition

ParameterDefinition

InterpolationDefinition

DataDefinition

PluginDefinition

CodecDefinition

InterpolationDefinitions

CodecDefinitions

OperationDefinitions

PluginDefinitions

ParameterDefinitions

DataDefinitions

ContainerDefinitions

0..* {set}

0..* {set}

0..* {set}

0..* {set}

0..* {set}

0..* {set}0..* {set}

KLVDataDefinition

KLVDataDefinitions

0..* {set}

TaggedValueDefinition

TaggedValueDefinitions

0..* {set}

Property Name Type Req
? Meaning

OperationDefinitions StrongReferenceSet of
OperationDefinition

Opt Specifies the OperationDefinitions that are used in the file

ParameterDefinitions StrongReferenceSet of
ParameterDefinition

Opt Specifies the ParameterDefinitions that are used in the file

DataDefinitions StrongReferenceSet of
DataDefintion

Opt Specifies the DataDefinitions that are used in the file

PluginDefinitions StrongReferenceSet of
PluginDefinition

Opt Identifies code objects that provide an implementation for a DefinitionObject, such
as a CodecDefinition or an InterpolationDefinition

CodecDefinitions StrongReferenceSet of
CodecDefinition

Opt Specifies CodecDefinitions that describe code that can compress or uncompress
samples of EssenceData or that can convert samples to another format

ContainerDefinitions StrongReferenceSet of
ContainerDefinition

Opt Specifies ContainerDefinitions that describe container mechanisms used to store
essence

InterpolationDefinitions StrongReferenceSet of Opt Specifies InterpolationDefinitions that can calculate values in a VaryingValue

AAF Object Specification 1.1

Page 30 of 136 pages

Property Name Type Req
? Meaning

InterpolationDefinition based on the values specified by the ControlPoints
KLVDataDefinitions StrongReferenceSet of

KLVDataDefinition
Opt Specifies KLVDataDefinitions that document KLVData objects used in the file

TaggedValueDefinitions StrongReferenceSet of
TaggedValueDefinition

Opt Specifies TaggedValueDefinitions that document TaggedValue objects used in
the file

Informative note: The Dictionary object API in the AAF reference implementation (IAAFDictionary) is used to access the
MetaDictionary.

6.5 ContentStorage class

The ContentStorage class has the Mob and EssenceData objects. An AAF file shall have exactly one
ContentStorage object.

The ContentStorage class is a sub-class of InterchangeObject.

InterchangeObject

Mobs

EssenceData

Mob

EssenceData

0..* {set}

0..* {set}

ContentStorage

Property Name Type Req ? Meaning
Mobs StrongReferenceSet of Mob Req Has a set of all Mobs in the file

EssenceData StrongReferenceSet of EssenceData Req Has a set of all EssenceData objects in the file

A ContentStorage may have any number of Mobs.

6.6 Mob class

The Mob class specifies a Mob, which can describe a composition, essence, or physical media.

The Mob class is a sub-class of InterchangeObject.

The Mob class is an abstract class.

All Mob objects shall be owned by the ContentStorage object.

 AAF Object Specification v1.1

 Page 31 of 136 pages

Mobs have a globally unique ID, and they are the only elements of an AAF file that can be referenced from
outside the file.

A Mob object shall have one or more MobSlots
Informative note: However, this is not enforced by the AAF reference implementation, and applications should expect to
encounter some Mobs with no MobSlots

InterchangeObject

Mob

MobID : MobIDType
Name : String
LastModified : TimeStamp
CreationTime : TimeStamp
UsageCode : UsageType

Slots

UserComments

1..* {ordered}

TaggedValue

0..*

KLVData

0..*

KLVData

MobSlot

Attributes

TaggedValue

0..*

Property
Name Type Req

? Meaning

MobID MobIDType Req Unique Mob Identification
Name String Opt Name of Mob for display to end user
Slots StrongReferenceVector of

MobSlot
Req Has an ordered set of MobSlots

LastModified TimeStamp Req Date and time when the Mob was last modified
CreationTime TimeStamp Req Date and time when the Mob was originally created

UserComments StrongReferenceVector of
TaggedValue

Opt Has a set of TaggedValues that specify user comments, which are directly classified
and set up by the operator (e.g. Bin columns)

Attributes StrongReferenceVector of
TaggedValue

Opt Has a set of TaggedValues that specify attributes, which are under the control of the
application (e.g. filter control)

KLVData StrongReferenceVector of
KLVData

Opt Contains a set of user KLV data consisting of a key (a SMPTE label), a length, and a
value

UsageCode UsageType Opt Specifies the usage of this Mob

AAF Object Specification 1.1

Page 32 of 136 pages

MobSlots are ordered to allow ScopeReferences within one slot to reference another slot. The Mob defines a
scope consisting of the ordered set of MobSlots. A ScopeReference object in a MobSlot can refer to any
MobSlot that precedes it. A ScopeReference returns the same time-varying values as the section in the
specified Mob MobSlot that corresponds to the starting point of the ScopeReference in the MobSlot and the
duration of the ScopeReference. In addition to Mobs, NestedScope objects define scopes; however, their scope
is limited to the Components owned by the NestedScope object’s tracks.

6.7 CompositionMob class

The CompositionMob class specifies how to combine essence elements into a sequence, how to modify
essence elements, and how to synchronize essence elements.

The CompositionMob class is a sub-class of the Mob class.

Mob

CompositionMob

DefaultFadeLength : LengthType
DefFadeType : FadeType
DefFadeEditUnit : Rational
Rendering : MobIDType

Property Name Type Req ? Meaning
DefaultFadeLength LengthType Opt – see

conditional rule 1
Specifies the default length of the audio fade-in and fade-out to be applied to all audio

SourceClips that do not specify the audio fade properties
DefaultFadeType FadeType Opt – see

conditional rule 1
Specifies the default type of audio fade

DefaultFadeEditUnit Rational Opt – see
conditional rule 1

Specifies the edit units in which the default fade length is specified

Rendering MobIDType Opt Specifies a mixdown of the composition. The start of the mixdown and the start of the
composition are assumed to be co-timed.

Conditional rule 1 The properties DefaultFadeLength, DefaultFadeType and DefaultFadeEditUnit specify

default audio fade behaviour for a CompositionMob. If any of these properties are specified,
then all three shall be specified.

6.8 MasterMob class

The MasterMob class provides access to the SourceMobs and EssenceData objects

The MasterMob class is a sub-class of the Mob class.

 AAF Object Specification v1.1

 Page 33 of 136 pages

Mob

MasterMob

The MasterMob class does not define any additional properties.

6.9 SourceMob class

The SourceMob class describes essence that is either stored in a digital form in a file or stored on a physical
media, such as tape or film.

The SourceMob class is a sub-class of the Mob class.

The essence represented by a SourceMob is immutable. If the essence changes, such as if a videotape is
redigitized, you must create a new SourceMob with a new Mob ID.

EssenceDescription

Mob

SourceMob

EssenceDescriptor

Property Name Type Req ? Meaning
EssenceDescription StrongReference to EssenceDescriptor Req Describes the format of the essence associated with the SourceMob.

A SourceMob object shall either be a file SourceMob or a physical SourceMob. If a SourceMob has an
EssenceDescriptor that belongs to the FileDescriptor class, then the SourceMob is a file SourceMob. If a
SourceMob has an EssenceDescriptor that does not belong to the FileDescriptor class, then the SourceMob is a
physical SourceMob.

If the digital essence is a stream of interleaved essence, then the file SourceMob should have one MobSlot for
each channel of interleaved essence.

If the physical media contains more than one track of essence, then the physical SourceMob should have one
MobSlot for each physical track. In addition, the physical SourceMob may have a MobSlot for timecode data and
may have a MobSlot for edgecode data.

AAF Object Specification 1.1

Page 34 of 136 pages

The MobSlots in a file SourceMob should have a Segment that is a SourceClip. If there is a Mob that describes
the previous generation of essence, the SourceClip should specify the MobID of that Mob. The previous
generation can be a physical SourceMob or another file SourceMob. If there is no previous generation of
essence or there is no Mob describing it, the SourceClip should specify a zero-value SourceID property.

The MobSlot in a physical SourceMob should have a Segment that is a SourceClip, Timecode or Edgecode. If
there is a Mob that describes the previous generation of essence, the SourceClip should specify the MobID of
that Mob. The previous generation should be a physical SourceMob. If there is no previous generation of
essence or there is no Mob describing it, the SourceClip should specify a zero-value SourceID property.
Informative note: The length of the Segment in the Mob MobSlot indicates the duration of the essence. If you create a
SourceMob for a physical media source and you do not know the duration of the essence, specify a length of 24 hours.

6.10 MobSlot class

The MobSlot class represents an individual track in a Mob.

The MobSlot class is a sub-class of the InterchangeObject class.

The MobSlot class is an abstract class.

All MobSlot objects shall be members of the set of MobSlots of a Mob object.

InterchangeObject

MobSlot

SlotID : UInt32
SlotName : String
PhysicalTrackNumber : UInt32

Segment

Segment

Property Name Type Req ? Meaning
SlotID UInt32 Req Specifies an integer that is used to reference the MobSlot

SlotName String Opt Specifies a text name for the MobSlot
PhysicalTrackNumber UInt32 Opt Specifies the physical channel

Segment StrongReference to Segment Req Specifies the value of the MobSlot

6.11 TimelineMobSlot class

The TimelineMobSlot class describes time-varying timeline essence.

The TimelineMobSlot class is a sub-class of the MobSlot class.

 AAF Object Specification v1.1

 Page 35 of 136 pages

If a TimelineMobSlot has a Sequence containing an Event, then the Sequence shall conform to the following
rules:

All Segments in the Sequence shall be Events or Fillers.

All Events in the Sequence shall belong to the same concrete sub-class of Event.

All Events and Fillers in the Sequence shall have the same data definition as the Sequence.

MobSlot

TimelineMobSlot
EditRate : Rational
Origin : PositionType
MarkIn : PositionType
MarkOut : PositionType
UserPos : PositionType

Property
Name Type Req ? Meaning

EditRate Rational Req Specifies the units of time for the TimelineMobSlot
Origin PositionType Req Specifies the offset used to resolve SourceClip references to this TimelineMobSlot. A positive value of

Origin means that the first sample of the essence is earlier than the zero position. A negative value of
Origin means that the zero position is earlier than the first sample of the essence.

MarkIn PositionType Opt – see
conditional rule

1

Specifies the position of the marked IN point as a count of edit units from the zero position of the
TimelineMobSlot

MarkOut PostiionType Opt – see
conditional rule

1

Specifies the position of the marked OUT point as a count of edit units from the zero position of the
TimelineMobSlot

UserPos PositionType Opt – see
conditional rule

1

Specifies a user position as a count of edit units from the zero position of the TimelineMobSlot

Conditional rule 1 MarkIn, MarkOut and UserPos are optional in a CompositionMob or MasterMob. MarkIn,
MarkOut and UserPos shall not be present in a SourceMob.

MarkIn, MarkOut and UserPos apply to the MobSlot on which they appear, in the edit rate of that MobSlot. An
application may assume that the mark point or user position also applies to other tracks for which no mark points
or user position are specified.

If a Component is in a TimelineMobSlot, then it shall have a Length property. If a Component is in a
StaticMobSlot, then it shall not have a Length property. If a Component is in an EventMobSlot, then it may have
a Length property. If a Component in an EventMobSlot does not have a Length property, then the Component
describes an instantaneous event that does not have a duration.

AAF Object Specification 1.1

Page 36 of 136 pages

The TimelineMobSlot specifies the edit rate for the Segment it has. The Segment specifies its length in the edit
rate set by the TimelineMobSlot. The Segment also specifies its own data kind.

6.12 EventMobSlot class

The EventMobSlot class has a Sequence of Events.

The EventMobSlot class is a sub-class of the MobSlot class.

An EventMobSlot shall have a concrete Segment that is either a concrete sub-class of Event or a Sequence.

If an EventMobSlot has a Sequence, then the Sequence shall conform to the following rules:

All Segments in the Sequence shall be Events.

All Events in the Sequence shall belong to the same concrete sub-class of Event.

All Events in the Sequence shall have the same data definition as the Sequence.

In a Sequence, the Position of each Event shall be greater than or equal to the Position of the Event
preceding it in the Sequence.

Informative note: To correlate the Events in an EventMobSlot with a TimelineMobSlot to which they may refer, the
EventMobSlot may be given the same data definition and the same PhysicalTrackNumber as the target TimelineMobSlot.

MobSlot

EventMobSlot
EditRate : Rational

Property Name Type Req ? Meaning
EditRate Rational Req Specifies the units in which the events specify their starting time and duration

6.13 StaticMobSlot class

The StaticMobSlot describes essence data that has no relationship to time, such as a static image.

The StaticMobSlot class is a sub-class of the MobSlot class.

 AAF Object Specification v1.1

 Page 37 of 136 pages

MobSlot

StaticMobSlot

The StaticMobSlot class does not define any additional properties. StaticMobSlot objects have Segments that
do not have any relationship with time; consequently, a StaticMobSlot does not define an edit rate.

6.14 KLVData class

The KLVData class contains user data specified with a Key (SMPTE label), Length, and Value.

The KLVData class is a sub-class of the InterchangeObject class.

InterchangeObject

KLVData
Value : Opaque

Property Name Type Req ? Meaning
Value Opaque Req Specifies the key, length, and value

6.15 TaggedValue class

The TaggedValue class specifies a user-defined tag and value.

The TaggedValue class is a sub-class of the InterchangeObject class.

InterchangeObject

TaggedValue
Name : String
Value : Indirect

AAF Object Specification 1.1

Page 38 of 136 pages

Property Name Type Req ? Meaning
Name String Req User-specified tag
Value Indirect Req User-specified value

6.16 Parameter class

The Parameter class specifies an effect control value.

The Parameter class is a sub-class of the InterchangeObject class.

The Parameter class is an abstract class.

A Parameter object shall be owned by an OperationGroup object.

A Parameter object is an effect control, which specifies values for adjustments in the way the effect should be
performed. An effect can have constant control parameters or have control parameters whose values vary over
time. For example, a picture-in-picture effect where the size and transparency of the inserted picture stays
constant throughout the effect has constant control parameters, but a picture-in-picture effect that starts with a
small inserted picture that grows larger during the effect has control arguments with time-varying values. A
constant control argument can be specified with a ConstantValue object. A time-varying value is specified with a
VaryingValue object.

InterchangeObject

Parameter
Definition : AUID

Property Name Type Req ? Meaning
Definition AUID Req Identifies the Parameter

6.17 ConstantValue class

The ConstantValue class specifies a constant data value for an effect control value.

The ConstantValue class is a sub-class of the Parameter class.

 AAF Object Specification v1.1

 Page 39 of 136 pages

Parameter

ConstantValue
Value : Indirect

Property Name Type Req ? Meaning
Value Indirect Req Specifies the value

6.18 VaryingValue class

The VaryingValue class specifies a changing data value for an effect control value.

The VaryingValue class is a sub-class of the Parameter class.

PointList

Parameter

1..* {ordered}VaryingValue

Interpolation

InterpolationDefinition

ControlPoint

Property
Name Type Req

? Meaning

Interpolation WeakReference to
InterpolationDefinition

Req Specifies the kind of interpolation to be used to find the value between ControlPoints

PointList StrongReferenceVector of
ControlPoint

Req Has an array of ControlPoints, each of which specifies a value and a time point at
which the value is defined

A VaryingValue object shall have at least one ControlPoint. A VaryingValue object should have at least two
Control Points, one should specify a value at the time 0.0 and another should specify a value at the time 1.0.

ControlPoints shall be ordered by their time value.

A VaryingValue object is a Parameter that returns time-varying values that are determined by an ordered set of
ControlPoints. Each ControlPoint specifies the value for a specific time point within the Segment. The values for
time points between two ControlPoints are calculated by interpolating between the two values.

AAF Object Specification 1.1

Page 40 of 136 pages

A ControlPoint that has a Time value equal to 0.0 represents the time at the beginning of the VaryingValue
object; one with a time equal to 1.0 represents the time at the end of the VaryingValue object. ControlPoints with
Time values less than 0.0 and greater than 1.0 are meaningful but are only used to establish the interpolated
values within the VaryingValue object—they do not affect values outside of the duration of the VaryingValue
object.

Since time is expressed as a rational value, any arbitrary time can be specified—the specified time point does
not need to correspond to the starting point of an edit unit.

If more than two ControlPoint objects specify the same value, the last ControlPoint determines the value for the
time point specified and is used to interpolate values after this time point.

The following equation specifies the value at time X, by using a linear interpolation and the values specified for
time A and time B.

 ValueX = (TimeX – TimeA) / (TimeB - TimeA) x (ValueB – ValueA) + ValueA

If the first ControlPoint in a VaryingValue object specifies a time value greater than 0, this value is extrapolated
to the 0.0 time point by holding the value constant. If the last ControlPoint in a VaryingValue object specifies a
time value less than 1.0, this value is extrapolated to the 1.0 time point by holding the value constant. This
extrapolation method of holding values is used if the interpolation method specified for the Varying alue object is
constant or linear interpolation.

The VaryingValue object specifies a value for each time point within the VaryingValue object; however if you are
generating a stream of essence from the CompositionMob owning the VaryingValue object, it may be important
to adjust values produced by the VaryingValue object based on sample-rate quantization. Within an essence
sample unit, there can only be a single value of the VaryingValue object when generating that sample.

6.19 ControlPoint class

The ControlPoint class specifies a value and a time point and is used to specify an effect control value.

The ControlPoint class is a sub-class of the InterchangeObject class.

InterchangeObject

ControlPoint

Value : Indirect
Time : Rational
EditHint : EditHintType

Property Name Type Req ? Meaning
Value Indirect Req Specifies the value
Time Rational Req Specifies the time within the VaryingValue segment for which the value is defined

EditHint EditHintType Opt Specifies a hint to be used if the effect starting time or length is changed during editing

A ControlPoint object specifies the value at a specific time in a VaryingValue object. The values of all
ControlPoint objects owned by a VaryingValue must have the same type.

 AAF Object Specification v1.1

 Page 41 of 136 pages

A Time equal to 0.0 represents the time at the beginning the VaryingValue Object; a Time equal to 1.0
represents the time at the end of the VaryingValue object

6.20 Locator class

The Locator class provides information to help find a file that contains the essence or to help find the physical
media.

The Locator class is a sub-class of the InterchangeObject class.

The Locator class is an abstract class.

A Locator object shall be a member of the array of Locators in an EssenceDescriptor.

Locator

InterchangeObject

The Locator class does not define any additional properties.

6.21 NetworkLocator class

The NetworkLocator class provides information to help find a file containing essence.

The NetworkLocator class is a sub-class of the Locator class.

NetworkLocator
URLString : String

Locator

Property
Name Type Req

? Meaning

URLString String Req Absolute Uniform Resource Locator (URL) complying with RFC 1738 or relative Uniform Resource Identifier (URI)
complying with RFC 2396 for file containing the essence. If it is a relative URI, the base URI is determined from the

URI of the AAF file itself.
Informative note: A valid URL or URI uses a constrained character set and uses the / character as the path separator

AAF Object Specification 1.1

Page 42 of 136 pages

The NetworkLocator has a URL that provides a hint to help an application find a file containing the essence
data.

6.22 TextLocator class

The TextLocator class provides information to help find a file containing the essence or to help find the physical
media.

The TextLocator class is a sub-class of the Locator class.

TextLocator
Name : String

Locator

Property Name Type Req ? Meaning
Name String Req Text string containing information to help find the file containing the essence or the physical media

A TextLocator object provides information to the user to help locate the file containing the essence or to locate
the physical media. The TextLocator is not intended for applications to use without user intervention.

6.23 DescriptiveFramework class

The DescriptiveFramework class specifies descriptive metadata.

The DescriptiveFramework class is a sub-class of the InterchangeObject class.

The DescriptiveFramework class is an abstract class.

DescriptiveFramework

InterchangeObject

The DescriptiveFramework class does not define any additional properties.

 AAF Object Specification v1.1

 Page 43 of 136 pages

7 Component Classes
This chapter includes the class specifications for classes in the Component package. Figure 17 shows the class
hierarchy for the Component package.

The class specification pages are presented in order according to the class hierarchy, reading the Figure left to
right, depth-first.

AAF Object Specification 1.1

Page 44 of 136 pages

Component

Transition Segment

SourceReference

SourceClip

FillerSequence

Event

CommentMarker

Component

TimecodeStream

Pulldown
TimecodeStream12M

ScopeReferenceNestedScopeOperationGroup

SelectorEssenceGroup

TimecodeEdgecode

GPITrigger

DescriptiveMarker

Figure 17 Component Package

7.1 Component class

The Component class represents an essence element.

 AAF Object Specification v1.1

 Page 45 of 136 pages

The Component class is a sub-class of InterchangeObject.

The Component class is an abstract class.

InterchangeObject

KLVData

DataDefinition
DataDefinition

KLVData
0..*

Component
Length : LengthType

UserComments

TaggedValue

0..*

Attributes

TaggedValue

0..*

Property
Name Type Req ? Meaning

DataDefinition WeakReference to
DataDefinition

Req Specifies the DataDefinition object that specifies the kind of data described
by the component

Length LengthType Opt – see
conditional rule 1

Specifies the duration in edit units of the component

KLVData StrongReferenceVector of
KLVData

Opt Contains a set of user KLV data consisting of a key (a SMPTE label), a
length, and a value.

UserComments StrongReferenceVector of
TaggedValue

Opt Has a set of TaggedValues that specify user comments, which are directly
classified and set up by the operator (e.g. Bin columns)

Attributes StrongReferenceVector of
TaggedValue

Opt Has a set of TaggedValues that specify attributes, which are under the
control of the application (e.g. filter control)

Conditional rule 1 If a Component is in a TimelineMobSlot, then it shall have a Length property. If a
Component is in a StaticMobSlot, then it shall not have a Length property. If a Component
is in an EventMobSlot, then it may have a Length property. If a Component in an
EventMobSlot does not have a Length property, then the Component describes an
instantaneous event that does not have a duration.

7.2 Transition class

The Transition class specifies that the two adjacent Segments should be overlapped when they are played and
the overlapped sections should be combined using the specified effect.

The Transition class is a sub-class of the InterchangeObject class.

A Transition object shall be in a Sequence within a CompositionMob.

AAF Object Specification 1.1

Page 46 of 136 pages

Component

Transition
CutPoint : PositionType

OperationGroup

OperationGroup

Property Name Type Req
? Meaning

OperationGroup StrongReference to
OperationGroup

Req Has an OperationGroup that specifies the effect to be performed during the
Transition

CutPoint PositionType Req Specifies a cutpoint to use if replacing the Transition with a cut.

The OperationGroup in a Transition shall specify an OperationDefinition with two input Segments. The
OperationGroup in a Transition shall not have the InputSegments specified. The input segments are implicitly
provided by the Segments preceding and following the Transition.

A Transition object specifies that sections of the preceding and following segments overlap for the duration of
the Transition. The effect combines the essence from the overlapping sections in some way.

The Transition cut point has no direct effect on the results produced by a Transition. However, the cut point
provides information that is useful if an application wishes to remove the Transition or substitute a cut when
playing the Transition. The cut point is represented as an offset from the beginning of the Transition. When
removing the Transition, an application would change the CompositionMob so that the preceding Segment ends
where the cut point is located, and the succeeding Segment starts at that location. This can be done by trimming
the end of the preceding Segment by an amount equal to the Transition length minus the cut point offset, and
trimming the beginning of the succeeding Segment by an amount equal to the cut point offset.

7.3 Segment class

The Segment class represents a Component that is independent of any surrounding object.

The Segment class is a sub-class of the Component class.

The Segment class is an abstract class.

 AAF Object Specification v1.1

 Page 47 of 136 pages

Segment

Component

The Segment class does not define any additional properties.

7.4 Sequence class

The Sequence class combines an ordered list of Segments and Transitions.

The Sequence class is a sub-class of the Segment class.

Segment

Sequence
Components

1..* {ordered}
Component

Property Name Type Req ? Meaning
Components StrongReferenceVector of Component Req Has an ordered set of Component objects

The first and last Component in the ordered set shall be Segment objects

A Transition object shall only appear in a Sequence between two Segment objects. The length of each of these
Segments shall be greater than or equal to the length of the Transition.

If a Segment object has a Transition before it and after it, the sum of the lengths of the surrounding Transitions
shall be less than or equal to the length of the Segment that they surround.

The length of the Sequence shall be equal to the sum of the length of all Segments directly owned by the
Sequence minus the sum of the lengths of all Transitions directly owned by the Sequence.

The data definition of each Component in the Sequence object shall be the same as the data definition of the
Sequence.

The Sequence object is the mechanism for combining sections of essence to be played in a sequential manner.

If a Sequence object has a Segment followed by another Segment, after the first Segment is played, the
following one begins immediately

AAF Object Specification 1.1

Page 48 of 136 pages

If a Sequence object has a Transition object, the last section of the Segment that precedes the Transition, the
Transition, and the first section of the Segment that follows the Transition are overlapped. The duration of the
Transition determines the duration of the section of the preceding and following Segments that are overlapped.

7.5 Filler class

The Filler class represents an unspecified value for the duration of the object.

The Filler class is a sub-class of the Segment class.

Segment

Filler

The Filler class does not define any additional properties.
Informative note: Typically, a Filler object is used in a Sequence to allow positioning of a Segment when not all of the
preceding material has been specified. Another typical use of Filler objects is to fill time in MobSlots and NestedScope tracks
that are not referenced or played.
If a Filler object is played, applications can choose any appropriate blank essence to play. Typically, a video
Filler object would be played as a black section, and an audio Filler object would be played as a silent section.

7.6 SourceReference class

The SourceReference class represents the essence or other data described by a MobSlot in a Mob.

The SourceReference class is a sub-class of the Segment class.

The SourceReference class is an abstract class.

A SourceReference object in a Mob refers to a MobSlot in another Mob by specifying the second Mob's MobID
and the SlotID of the MobSlot owned by it.

To reference a single channel of a multi-channel track from a mono track, the SourceReference::ChannelIDs
property is used with a single element in the array. To reference multiple channels of a multi-channel track from
a multi-channel track, the SourceReference::ChannelIDs property is used with multiple elements in the array.

To reference multiple mono tracks from a multi-channel track, the SourceReference::MonoSourceSlotIDs is
used with multiple elements in the array.

 AAF Object Specification v1.1

 Page 49 of 136 pages

Segment

SourceReference

SourceID : MobIDType
SourceMobSlotID : UInt32
ChannelIDs : UInt32Array
MonoSourceSlotIDs : UInt32Array

Property Name Type Req ? Meaning Default
SourceID MobIDType Opt Identifies the Mob being referenced. If the property has a value 0, it means

that the Mob owning the SourceReference describes the original source

SourceMobSlotID UInt32 Req – see
conditional

rule 3

Specifies the SlotID of a Mob Slot within the specified Mob. If the SourceID
has a value 0, then SourceMobSlotID shall also have a 0 value.

ChannelIDs UInt32Array Opt – see
conditional

rule 1

For references to a multi-channel MobSlot, ChannelIDs specifies the
channels within that MobSlot that are referenced. A channel ID of N refers to
the Nth channel in the referenced MobSlot. The first channel has a channel

ID of 1. The number of elements in the ChannelIDs array shall equal the
number of channels being described by the MobSlot containing the

SourceReference, e.g. 1 element for a mono audio MobSlot, 6 elements for a
5.1 multi-channel audio MobSlot.

All channels of
referenced

MobSlot are
referenced with

no change in
order

MonoSourceSlotIDs UInt32Array Opt – see
conditional

rule 2

For references from a multi-channel MobSlot to multiple mono MobSlots,
MonoSourceSlotIDs specifies multiple mono MobSlots that are referenced.
The number of elements in the MonoSourceSlotIDs array shall equal the

number of channels being described by the MobSlot containing the
SourceReference, e.g. 6 elements for a 5.1 multi-channel audio MobSlot.

Conditional rule 1 If the referenced MobSlot is multi-channel and the referencing MobSlot has the same
number of channels, the ChannelsIDs property may be present. If the referenced MobSlot is
multi-channel and the referencing MobSlot has a different number of channels, the
ChannelIDs property shall be present. Otherwise, the ChannelIDs property shall not be
present.

Conditional rule 2 If the referencing MobSlot is multi-channel and the references are to multiple mono

MobSlots, the MonoSourceSlotIDs property shall be present. Otherwise, the
MonoSourceSlotIDs property shall not be present. If the Mob owning the SourceReference
describes the original essence and there is no previous generation, the MonoSourceSlotIDs
property shall not be present.

Conditional rule 3 If the MonoSourceSlotIDs property is present, then an importing application shall ignore the

value of SourceMobSlotID.

To create a SourceReference that refers to a MobSlot within the same Mob as the SourceReference, omit the
SourceID property.

AAF Object Specification 1.1

Page 50 of 136 pages

7.7 SourceClip class

The SourceClip class represents the essence and identifies the source of the essence.

The SourceClip class is a sub-class of the SourceReference class.

SourceReference

SourceClip

StartTime : PositionType
FadeInLength : LengthType
FadeInType : FadeType
FadeOutLength : LengthType
FadeOutType : FadeType

Property Name Type Req ? Meaning
StartTime PositionType Opt – see

conditional rule 1
Specifies the offset from the origin of the referenced Mob MobSlot in edit units determined
by the SourceClip object’s context. If the SourceID has a value 0, then StartTime shall also

have a 0 value
FadeInLength
(deprecated)

LengthType Opt – see
conditional rule 2

Specifies the length of an audio fade in to be applied to the SourceClip

FadeInType
(deprecated)

FadeType Opt – see
conditional rule 2

Specifies the type of the audio fade in

FadeOutLength
(deprecated)

LengthType Opt – see
conditional rule 2

Specifies the length of an audio fade out to be applied to the SourceClip

FadeOutType
(deprecated)

FadeType Opt – see
conditional rule 2

Specifies the type of the audio fade out

Conditional rule 1 If the SourceClip references a TimelineMobSlot or an EventMobSlot, then the StartTime
property shall be specified. If the SourceClip references a StaticMobSlot, then the StartTime
property shall not be specified.

Conditional rule 2 If the SourceClip data definition is not a Sound, then the fade properties should not be

present.

The FadeInLength, FadeInType, FadeOutLength and FadeOutType properties are deprecated. The preferred
way of specifying an audio fade is to use a Transition object with an appropriate effect.

If a SourceMob represents the original essence source and there is no previous generation, then its SourceClips
shall specify a value 0 for its SourceID and 0 values for SourceMobSlotID and StartTime.

The data definition of the Segment owned by the referenced MobSlot shall be the same as the data definition of
the SourceClip object.

A SourceClip’s StartTime and Length values are in edit units determined by the slot owning the SourceClip.

 AAF Object Specification v1.1

 Page 51 of 136 pages

Informative note: If the SourceClip references a MobSlot that specifies a different edit rate than the MobSlot owning the
SourceClip, the StartTime and Length are in edit units of the slot owning the SourceClip, and not edit units of the referenced
slot.
In a CompositionMob, SourceClips reference a section of essence by specifying the MasterMob that describes
the essence. In a MasterMob, SourceClips reference the essence by specifying the file SourceMob that is
associated with the essence. In a file SourceMob, SourceClips reference the essence stored on a physical
media, such as tape or film, by specifying the physical SourceMob that describes the media. In a physical
SourceMob, SourceClips reference the essence stored on a previous generation of physical media by specifying
the physical SourceMob that describes the media.

7.8 Event class

The Event class defines a text comment, a trigger, or an area in the image that has an associated interactive
action.

The Event class is a sub-class of the Segment class.

The Event class is an abstract class.

Segment

Event
Position : PositionType
Comment : String

Property Name Type Req ? Meaning
Position PositionType Req – see conditional rule 1 Specifies the starting time of the event in an EventMobSlot

Comment String Opt Specifies the purpose of the event

Conditional rule 1 If an Event is in a TimelineMobSlot or a StaticMobSlot, it shall not have a Position property.
If an Event is in a EventMobSlot, it shall have a Position property.

An Event’s Position is an absolute time expressed in edit units of the MobSlot owning the Event.

7.9 CommentMarker class

The CommentMarker class specifies a user comment that is associated with a point in time.

The CommentMarker class is a sub-class of the Event class.

AAF Object Specification 1.1

Page 52 of 136 pages

Event

CommentMarker Annotation

SourceReference

Property Name Type Req ? Meaning
Annotation StrongReference to SourceReference Opt Specifies text or audio annotation

Informative note: To correlate CommentMarkers with a MobSlot to which they may refer, the EventMobSlot may be given
the same data definition and the same PhysicalTrackNumber as the target MobSlot.

7.10 DescriptiveMarker class

The DescriptiveMarker class specifies descriptive metadata that is associated with a point in time.

The DescriptiveMarker class is a sub-class of the CommentMarker class.

CommentMarker

Description

DescriptiveFramework

DescriptiveMarker
DescribedSlots : UInt32Set

Property
Name Type Req

? Meaning Default

DescribedSlots UInt32Set Opt Specifies SlotIDs in this Mob that the
DescriptiveMarker descibes

DescriptiveMarker describes all
tracks

Description StrongReference to
DescriptiveFramework

Opt Specifies DescriptiveFramework

Informative note: A DescriptionMarker object typically has a data definition of DataDef_DescriptiveMetadata.

7.11 GPITrigger class

The GPITrigger class specifies a trigger action that should be taken when the GPITrigger is reached.

 AAF Object Specification v1.1

 Page 53 of 136 pages

The GPITrigger class is a sub-class of the Event class.

Event

ActiveState : Boolean

GPITrigger

Property Name Type Req ? Meaning
ActiveState Boolean Req Specifies whether the event is turned on or off

A GPITrigger object specifies a trigger action that should be taken when its position in time is reached. The
ActiveState property specifies whether the trigger should be set on or off.

7.12 Timecode class

The Timecode class stores videotape or audio tape timecode information.

The Timecode class is a sub-class of the Segment class.

A Timecode object shall have a Timecode data definition.

Segment

Timecode

Start : PositionType
FPS : UInt16
Drop : Boolean

Property Name Type Req ? Meaning
Start PositionType Req Specifies the timecode at the beginning of the segment
FPS UInt16 Req Frames per second of the videotape or audio tape
Drop Boolean Req Indicates whether the timecode is drop (True value) or nondrop (False value)

Informative note: A Timecode object can typically appear in either a SourceMob or in a Composition Mob. In a SourceMob,
it typically appears in a MobSlot in a SourceMob that describes a videotape or audio tape. In this context, it describes the

AAF Object Specification 1.1

Page 54 of 136 pages

timecode that exists on the tape. In a Composition Mob, it represents the timecode associated with the virtual media
represented by the Composition Mob. If the Composition Mob is rendered to a videotape, the Timecode should be used to
generate the timecode on the videotape.

7.13 TimecodeStream class

The TimecodeStream class specifies a stream of timecode data.

The TimecodeStream class is a sub-class of the Segment class.

The TimecodeStream class is an abstract class.

Segment

TimecodeStream
SampleRate : Rational
Source : Stream
SourceType : TCSource

Property Name Type Req ? Meaning
SampleRate Rational Req Specifies the sample rate of the timecode data contained in the Source property

Source Stream Req Contains the timecode data
SourceType TCSource Req Specifies the kind of timecode

7.14 TimecodeStream12M class

The TimecodeStream12M class specifies a stream of timecode data in the SMPTE 12M format.

The TimecodeStream12M class is a sub-class of the TimecodeStream class.

A TimecodeStream12M object shall be a Segment in a TimelineMobSlot and have a Timecode data definition.

TimecodeStream

TimecodeStream12M
IncludeSync : Boolean

 AAF Object Specification v1.1

 Page 55 of 136 pages

Property Name Type Req ? Meaning Default
IncludeSync Boolean Opt Specifies whether the synchronization data is included in the timecode stream False

Informative note: In the AAF reference implementation, the IncludeSync property is currently only accessible using the
property direct interface

TimecodeStream and TimecodeStream12M specify a stream of timecode data. TimecodeStream12M conforms
to the SMPTE 12M format. If the IncludeSync property has a true value, the synchronization data is included for
each frame. If the IncludeSync property is false, the synchronization data, which has a fixed value, is omitted
from the timecode stream.

In contrast to TimecodeStream, Timecode specifies a timecode by specifying the starting timecode value; other
timecode values are calculated from the starting timecode and the time offset.
Informative note: TimecodeStream is useful to store user bits that were specified in the timecode on the videotape.

7.15 Edgecode class

The Edgecode class stores film edge code information.

The Edgecode class is a sub-class of the Segment class.

An Edgecode object shall have an Edgecode data definition.

Segment

Edgecode

Start : PositionType
FilmKind : FilmType
CodeFormat : EdgeType
Header : DataValue

Property
Name Type Req

? Meaning

Start PositionType Req Specifies the edge code at the beginning of the segment
FilmKind FilmType Req Specifies the type of film

CodeFormat EdgeType Req Specifies the edge code format
Header DataValue Opt Specifies the text prefix that identifies the film. Typically, this is a text string of no more than 8 7-bit ISO

characters

7.16 Pulldown class

The Pulldown class converts between film frame rates and videotape frame rates.

AAF Object Specification 1.1

Page 56 of 136 pages

The Pulldown class is a sub-class of the Segment class.
Informative note: Pulldown objects are typically used in file SourceMobs and physical SourceMobs.

Segment

Pulldown
PulldownKind : PulldownKindType
PulldownDirection : PulldownDirectionType
PhaseFrame : PhaseFrameType

InputSegment

Property Name Type Req
? Meaning

InputSegment StrongReference to
Segment

Req Has a Segment that is either a SourceClip or Timecode. The length of the SourceClip or
Timecode object is in the edit units determined by the PulldownKind and PulldownDirection

PulldownKind PulldownKindType Req Specifies whether the Pulldown object is converting from nominally 30 Hz or 25 Hz video
frame rate and whether frames are dropped or the video is played at another speed

PulldownDirection PulldownDirectionType Req Specifies whether the Pulldown object is converting from tape to film speed or from film to
tape speed

PhaseFrame PhaseFrameType Req Specifies the phase within the repeating pulldown pattern of the first frame after the pulldown
conversion. A value of 0 specifies that the Pulldown object starts at the beginning of the

pulldown pattern

A Pulldown object provides a mechanism to convert from essence between video and film rates and describes
the mechanism that was used to convert the essence.
Informative note: Pulldown objects are typically used in three ways:
In a tape SourceMob to describe how the videotape was created from film.
In a file SourceMob that has digital essence at film speed to describe how the digital essence was created from the
videotape.
In a Mob to create Timecode tracks at different edit rates.
The object owned by the Pulldown object has an edit time specified by the essence speed that the Pulldown
object is converting from.

Each kind of pulldown identifies the speed of the tape. If two SourceMobs have a pulldown relationship, the edit
rates of the video tracks should correspond to the frame rate of the essence.

7.17 OperationGroup class

The OperationGroup class contains an ordered set of Segments and an operation that is performed on these
Segments.

The OperationGroup class is a sub-class of the Segment class.

An OperationGroup object shall be part of a CompositionMob.

 AAF Object Specification v1.1

 Page 57 of 136 pages

OperationGroup
BypassOverride : UInt32

Parameter

Rendering
Parameters

SourceReference

0..*

Operation

OperationDefinition

InputSegmentsSegment

Property Name Type Req
? Meaning

Operation WeakReference to
OperationDefinition

Req Has a weak reference to an Operation Definition that identifies the kind of operation

InputSegments StrongReferenceVector of
Segment

Opt Has an array of input segments for the operation

Parameters StrongReferenceVector of
Parameter

Opt Has an array of control Parameters. The order is not meaningful

Rendering StrongReference to
SourceReference

Opt Specifies a rendered or precomputed version of the operation

BypassOverride UInt32 Opt Specifies the array index (1-based) of the input segment which is the primary input.
This overrides any bypass specified by the OperationDefinition

Informative note: In the AAF reference implementation, the Parameters property is implemented as a set, not as a vector
as specified here and in the MetaDictionary.

The length of the Rendering SourceClip shall equal the length of the OperationGroup.

In OperationGroup objects whose Operation Definition object does not specify a time warp the length of each
input Segment shall equal the length of the OperationGroup.

In an OperationGroup object that is in a Transition, the input segments are provided by the Transition and the
InputSegments property shall be omitted.

7.18 NestedScope class

The NestedScope class defines a scope and has an ordered set of Segments.

The NestedScope class is a sub-class of the Segment class.

A NestedScope object shall be part of a CompositionMob.

AAF Object Specification 1.1

Page 58 of 136 pages

Segment

NestedScope

1..* {ordered}

Slots

Property
Name Type Req

? Meaning

Slots StrongReferenceVector of
Segment

Req Has an ordered set of Segments; the last segment provides the value for the Nested
Scope object.

The length of each Segment object in the Slots vector shall be equal to the length of the NestedScope object.

The data kind of the last Segment in the Slots vector shall be the same as the data kind of the NestedScope
object.
Informative note: A Nested Scope object defines a scope and has an ordered set of Segments and produces the value
specified by the last Segment in the ordered set. Nested Scopes are typically included in Composition Mobs to allow more
than one Component to share access to a Segment. You can allow this sharing by using a Nested Scope object or by using
the scope defined by a Mob.

7.19 ScopeReference class

The ScopeReference class refers to a section in the specified MobSlot or NestedScope slot.

The ScopeReference class is a sub-class of the Segment class.

ScopeReference
RelativeScope : UInt32
RelativeSlot : UInt32

Segment

Property
Name Type Req

? Meaning

RelativeScope UInt32 Req Specifies the number of Nested Scopes to pass to find the Nested Scope or Mob owning the slot.
RelativeSlot UInt32 Req Specifies the number of slots that precede the slot owning the Scope Reference to pass to find the slot

referenced

 AAF Object Specification v1.1

 Page 59 of 136 pages

The data kind of the Segment in the referenced slot shall be the same as the data kind of the Scope Reference
object.

The value of RelativeScope shall be less than or equal to the number of Nested Scope objects that has the
Scope Reference. If the Scope Reference is not owned by a Nested Scope object, then it can only refer to a slot
defined by the Mob’s scope and the RelativeScope shall have a value of 0.
Informative note: A RelativeScope value of 0 specifies the current scope, that is the innermost Nested Scope object that
has the Scope Reference or the Mob scope if no Nested Scope object has it. A value of 1 specifies the scope level that has
the Nested Scope object that has the Scope Reference.
The value of RelativeSlot shall be greater than 0 and less than or equal to the number of slots that precede it
within the scope specified by RelativeScope.
Informative note: A RelativeSlot value of 1 specifies the immediately preceding slot.
A ScopeReference’s Length value and the offset in the slot owning the ScopeReference are in edit units
determined by the slot owning the ScopeReference.
Informative note: If the ScopeReference references a MobSlot that specifies a different edit rate than the MobSlot owning
the ScopeReference, the Length value and the offset in the slot owning the ScopeReference are in edit units of the slot
owning the ScopeReference, and not edit units of the referenced slot.
A Scope Reference object has the same time-varying values as the section of the Nested Scope slot or MobSlot
that it references. Scope Reference objects allow one or more objects to share the values produced by a section
of a slot.

If a Scope Reference specifies a Mob slot, the corresponding section of the slot is the one that has the
equivalent starting position from the beginning of the Mob slot and the equivalent length as the Scope Reference
object has within its Mob slot. If the specified MobSlot has a different edit rate than the Mob MobSlot owning the
Scope Reference, the starting position and duration are converted to the specified Mob MobSlots edit units to
find the corresponding section.

If a Scope Reference specifies a Nested Scope slot, the corresponding section of the slot is the one that has the
same starting position offset from the beginning of the Nested Scope segments and the same duration as the
Scope Reference object has in the specified scope.

If a ScopeReference refers to a MobSlot, the MobSlot shall belong to the same sub-class of MobSlot as the
MobSlot owning the ScopeReference object.
Informative note: This means that ScopeReferences should not be used to convert between timeline, static, and event
data; use SourceClips or SourceClips in conjunction with OperationGroups to perform these conversions.

Informative note: Applications may encounter some Scope References referring to non-existent slots within a relative
scope, therefore they should check that the referenced slot actually exists.

7.20 Selector class

The Selector class provides the value of a single Segment while preserving references to unused alternatives.

The Selector class is a sub-class of the Segment class.

AAF Object Specification 1.1

Page 60 of 136 pages

Segment

Selected

0..*

Selector

Alternates

Property Name Type Req ? Meaning
Selected StrongReference to Segment Req Has the selected Segment

Alternates StrongReferenceVector of Segment Opt Has a set of unused alternative Segments

The duration of the selected Segment and of each alternative Segment shall equal the duration of the Selector
object.

The data kind of the selected Segment and of each alternative Segment shall be the same as the data kind of
the Selector object.

A Selector object represents an editing decision. This is in contrast with an Essence Group object which
presents a group of alternative implementations of the same essence that the application can choose from
based on the most appropriate or efficient essence format among the alternatives.

7.21 EssenceGroup class

The EssenceGroup class describes multiple digital representations of the same original content source.

The EssenceGroup class is a sub-class of the Segment class.

An EssenceGroup object shall be a Segment in a MasterMob MobSlot. An EssenceGroup shall only be the
direct child of a MobSlot, i.e., a MobSlot can have an EssenceGroup which represents a choice between a
Sequence of resolution A or a Sequence of resolution B or a Sequence of resolution C, but all Components in
each Sequence shall be of the same resolution (the Components may also be Filler).

 AAF Object Specification v1.1

 Page 61 of 136 pages

Segment

EssenceGroup

StillFrame

SourceReference

Choices

1..*

Property
Name Type Req

? Meaning

Choices StrongReferenceVector of
Segment

Req Has a collection of Segments that identify the alternate representations that may be
chosen. The order of the items in the collection is not meaningful

StillFrame StrongReference to
SourceReference

Opt Has a SourceReference that identifies the essence for a single-frame image
representation of the essence

The Segment shall either be a SourceClip or a Sequence. If the Segment is a Sequence, it shall contain only
SourceClip and Filler objects.

The length of each Segment in the Choices set shall be the same as the length of the EssenceGroup object.

The length of the StillFrame SourceClip shall be 1.
Informative note: Typically the different representations vary in essence format, compression, or frame size. The
application is responsible for choosing the appropriate implementation of the essence.

8 DefinitionObject Classes
This chapter includes the class specifications for classes in the DefinitionObject package. Figure 18 shows the
class hierarchy for the DefinitionObject package.

The class specification pages are presented in order according to the class hierarchy, reading the Figure left to
right, depth-first.

AAF Object Specification 1.1

Page 62 of 136 pages

DefinitionObject

PluginDefinitionParameterDefinitionDataDefinition

DefinitionObject

CodecDefinitionOperationDefinition

InterpolationDefinitionContainerDefinition

KLVDataDefinition

TaggedValueDefinition

Figure 18 DefinitionObject Package

8.1 DefinitionObject class

The DefinitionObject class defines an item to be referenced.

The DefinitionObject class is a sub-class of the InterchangeObject class.

The DefinitionObject class is an abstract class.

InterchangeObject

DefinitionObject
Identification : AUID
Name : String
Description : String

Property Name Type Req ? Meaning
Identification AUID Req Specifies the unique identifier for the item being defined

Name String Req Specifies the display name of the item being defined
Description String Opt Provides an explanation of the use of the item being defined

8.2 DataDefinition class

The DataDefinition class specifies the kind of data that can be stored in a Component.

 AAF Object Specification v1.1

 Page 63 of 136 pages

The DataDefinition class is a sub-class of the DefinitionObject class.

All DataDefinition objects shall be owned by the Dictionary object.

DefinitionObject

DataDefinition

The DataDefinition class does not define any additional properties.

8.3 ContainerDefinition class

The ContainerDefinition class specifies the mechanism used to store essence data. A container can be either a
kind of file, such as an AAF file or it can be another mechanism for storing essence data.

The ContainerDefinition class is a sub-class of DefinitionObject.

All ContainerDefinition objects shall be owned by the Dictionary object.

DefinitionObject

ContainerDefinition
EssenceIsIdentified : Boolean

Property Name Type Req
? Meaning

EssenceIsIdentified Boolean Opt Specifies that the container uses the MobID to identify the essence data and that the container may contain
multiple essence data objects, each identified by a MobID.

8.4 OperationDefinition class

The OperationDefinition class identifies an operation that is performed on an array of Segments.

The OperationDefinition class is a sub-class of the DefinitionObject class.

All OperationDefinition objects shall be owned by the Dictionary object.

AAF Object Specification 1.1

Page 64 of 136 pages

DefinitionObject

DataDefinition

ParameterDefinition

OperationDefinition
IsTimeWarp : Boolean
OperationCategory : OperationCategoryType
NumberInputs : Int32
Bypass : UInt32

DegradeTo

0..* {ordered}

ParametersDefined
0..* {set}

DataDefinition

Property Name Type Req
? Meaning Default

DataDefinition WeakReference to DataDefinition Req Identifies the kind of data that is produced by the operation
IsTimeWarp Boolean Opt If true, specifies that the duration of the input segments can be different

from the duration of the Operation
False

DegradeTo WeakReferenceVector to
OperationDefinition

Opt Specify simpler operations that an application can substitute for the
defined operation if it cannot process it.

OperationCategory OperationCategoryType Opt Specifies the kind of operation, such as Video Effect, Audio Effect, or 3D
operation.

NumberInputs Int32 Req Specifies the number of input segments. A value of -1 indicates that the
effect can have any number of input segments.

Bypass UInt32 Opt Specifies the array index (1-based) of the input segment which is the
primary input

ParametersDefined WeakReferenceSet of
ParameterDefinition

Opt Specify the Parameters that can be used as controls for the operation.

8.5 ParameterDefinition class

The ParameterDefinition class defines a kind of Parameter for an effect.

The ParameterDefinition class is a sub-class of the DefinitionObject class.

All ParameterDefinition objects shall be owned by the Dictionary object.

 AAF Object Specification v1.1

 Page 65 of 136 pages

DefinitionObject

ParameterDefinition
DisplayUnits : String

Type

TypeDefinition

Property Name Type Req ? Meaning
Type WeakReference to TypeDefinition Req Specifies the data type of the Parameter

DisplayUnits String Opt A displayable string identifying the units in which the parameter is measured.
For example: L”% of picture width”

The value of a Parameter is specified in a property with an Indirect type. The Indirect type shall specify the same
TypeDefinition as its corresponding ParameterDefinition. The values of Parameters are specified in the
ConstantValue Value property and in the ControlPoint Value property. ControlPoints are contained in the
VaryingValues sub-class of Parameter.

8.6 InterpolationDefinition class

The InterpolationDefinition class specifies the mechanism used to calculate the values produced by a
VaryingValue using the specified ControlPoints.

The InterpolationDefinition class is a sub-class of the DefinitionObject class.

All InterpolationDefinition objects shall be owned by the Dictionary object.

DefinitionObject

InterpolationDefinition

The InterpolationDefinition class does not define any additional properties.

8.7 CodecDefinition class

The CodecDefinition specifies an essence codec.

The CodecDefinition class is a sub-class of the DefinitionObject class.

All CodecDefinition objects shall be owned by the Dictionary object.

AAF Object Specification 1.1

Page 66 of 136 pages

DefinitionObject

CodecDefinition

DataDefinition

FileDescriptorClass

DataDefinitions
1..* {set}

ClassDefinition

Property Name Type Req
? Meaning

FileDescriptorClass WeakReference to
ClassDefinition

Req Specifies the ClassDefinition of the sub-class of FileDescriptor that identifies the
essence format that this codec processes

DataDefinitions WeakReferenceSet of
DataDefinition

Req Specifies the DataDefinitions of the essence formats that this codec processes

The FileDescriptorClass property identifies the essence format that the Codec can process. For example, a
Codec that processes CDCI video data has a FileDescriptorClass that is a weak reference to the ClassDefinition
object defining the CDCIDescriptor class. Note that a Codec may not be able to process all variants of essence
formats. For example, a hardware accelerated Codec may only be able to process some compressions within
CDCI.

In most cases, a codec processes only one kind of DataDefinition. But some Codecs that process interleaved
essence data may be able to handle more than one. For example a Codec that processes MPEG or DV
essence may be able to handle both the picture and sound data.

8.8 PluginDefinition class

The PluginDefinition class identifies code objects that provide an implementation for a DefinitionObject, such as
CodecDefinition or for a MetaDefinition, such as a ClassDefinition.

The PluginDefinition class is a sub-class of the DefinitionObject class.

All PluginDefinition objects shall be owned by the Dictionary object.

 AAF Object Specification v1.1

 Page 67 of 136 pages

PluginDefinition

PluginCategory : PluginCategoryType
VersionNumber : VersionType
VersionString : String
Manufacturer : String
ManufacturerID : AUID
Platform : AUID
MinPlatformVersion : VersionType
MaxPlatformVersion : VersionType
Engine : AUID
MinEngineVersion : VersionType
MaxEngineVersion : VersionType
PluginAPI : AUID
MinPluginAPI : VersionType
MaxPluginAPI : VersionType
Softw areOnly : Boolean
Accelerator : Boolean
Authentication : Boolean
DefinitionObject : AUID

NetworkLocator

Locator

ManufacturerInfo

Locators

0..* {ordered}

DefinitionObject

Property Name Type Req ? Meaning Default
PluginCategory PluginCategoryType Req Specifies the kind of plugin
VersionNumber VersionType Req Specifies the version of the plugin
VersionString String Opt Specifies a string that can be used to identify the plugin version to

the user

Manufacturer String Opt Specifies a string that can be used to identify the plugin
manufacturer to the user

ManufacturerInfo StrongReference to
NetworkLocator

Opt Specifies a NetworkLocator that identifies a web page containing
information about the manufacturer

ManufacturerID AUID Opt Specifies a SMPTE label or other unique identifier that is
assigned to identify the manufacturer

Platform AUID Opt Identifies the platform environment, which consists of the
hardware platform and the operating system, required by the

plugin

MinPlatformVersion VersionType Opt Specifies the minimum version number of the specified platform
that the plugin requires

MaxPlatformVersion VersionType Opt Specifies the maximum version number of the specified platform
that the plugin requires

Engine AUID Opt Identifies the software subsystem used for essence management
and playback used by the plugin

MinEngineVersion VersionType Opt Specifies the minimum version number of the specified engine
that the plugin requires

MaxEngineVersion VersionType Opt Specifies the maximum version number of the specified engine
that the plugin requires

AAF Object Specification 1.1

Page 68 of 136 pages

Property Name Type Req ? Meaning Default
PluginAPI AUID Opt Identifies the plugin interfaces supported by the plugin

MinPluginAPI VersionType Opt Specifies the minimum version number of the specified plugin
interfaces that the plugin supports

MaxPluginAPI VersionType Opt Specifies the maximum version number of the specified plugin
interfaces that the plugin supports

SoftwareOnly Boolean Opt Specifies if the plugin is capable of executing in a software-only
environment

False

Accelerator Boolean Opt Specifies if the plugin is capable of using hardware to accelerate
essence processing

False

Locators StrongReferenceVector of
Locator

Opt Specifies an ordered list of locators that identify locations that
provide access to the plugin implementation

Authentication Boolean Opt Specifies that the plugin implementation supports authentication. False
DefinitionObject AUID Opt – see

conditional rule 1
Specifies the AUID of the ClassDefinition for the DefinitionObject

or MetaDefinition that it provides an implementation of

Conditional rule 1 DefinitionObject shall be specified.

Informative note: The Req/Opt status of DefinitionObject is the result of maintaining compatibility with the MetaDictionary
used by the AAF reference implementation v1.0.1.

8.9 TaggedValueDefinition class

The TaggedValueDefinition class documents the TaggedValue objects used in the file.

The TaggedValueDefinition class is a sub-class of the DefinitionObject class.

All TaggedValueDefinition objects shall be owned by the Dictionary object.

The Name property of the DefinitionObject super-class shall identify a particular tag that is used for the Name of
instances of the TaggedValue being documented.

DefinitionObject

TaggedValueDefinition

The TaggedValueDefinition class does not define any additional properties.

8.10 KLVDataDefinition class

The KLVDataDefinition class documents the KLVData objects used in the file.

The KLVDataDefinition class is a sub-class of the DefinitionObject class.

All KLVDataDefinition objects shall be owned by the Dictionary object.

 AAF Object Specification v1.1

 Page 69 of 136 pages

The Identification property of the DefinitionObject super-class shall identify a particular AUID that is used for the
Key of instances of the KLVData being documented.

KLVDataType

TypeDefinition

DefinitionObject

KLVDataDefinition

Property Name Type Req ? Meaning Default
KLVDataType WeakReference to TypeDefinition Opt Specifies the type of the Value of the identified KLVData VariableArray of UInt8

9 EssenceData Classes

9.1 EssenceData class

The EssenceData class contains essence.

The EssenceData class is a sub-class of the InterchangeObject class.

All EssenceData objects shall be owned by the ContentStorage object.

InterchangeObject

EssenceData

MobID : MobIDType
Data : Stream
SampleIndex : Stream

Property Name Type Req ? Meaning
MobID MobIDType Req Identifies the SourceMob that describes the essence
Data Stream Req Contains the essence data

SampleIndex Stream Opt Contains an index to the samples or frames. The format of the index is determined by the Codec

AAF Object Specification 1.1

Page 70 of 136 pages

10 EssenceDescriptor Classes
This chapter includes the class specifications for classes in the EssenceDescriptor package. Figure 19 shows
the class hierarchy for the EssenceDescriptor package.

The class specification pages are presented in order according to the class hierarchy, reading the Figure left to
right, depth-first.

EssenceDescriptor

FilmDescriptorTapeDescriptorFileDescriptor

EssenceDescriptor

DigitalImageDescriptor Non-normative
essence types

CDCIDescriptor RGBADescriptor

Sound essence
types

Physical essence
types

Figure 19 EssenceDescriptor Package

10.1 EssenceDescriptor class

The EssenceDescriptor class describes the format of the essence associated with a file SourceMob or of the
media associated with a physical SourceMob.

The EssenceDescriptor class is a sub-class of the InterchangeObject class.

The EssenceDescriptor class is an abstract class.

EssenceDescriptor Locator

0..* {ordered}
Locator

InterchangeObject

Property
Name Type Req

? Meaning

Locator StrongReferenceVector of
Locator

Opt Has an array of Locator objects that provide operating-system-dependent data or text
information that provide hints for finding files or physical media

 AAF Object Specification v1.1

 Page 71 of 136 pages

Locator objects provide information either for finding files or for finding physical media according to the following
rules:

If the object owning the Locators belongs to the FileDescriptor class as well as the EssenceDescriptor class,
then the Locators are owned by a file SourceMob and provide information for finding files. A file SourceMob
can have any number of Locators and the Locators may belong to any sub-class of Locator.

If the object owning the Locators belongs to the EssenceDescriptor class but not to the FileDescriptor class,
then the Locators are owned by a physical SourceMob and provide information for finding physical media. A
physical SourceMob can have any number of locators and Locators may belong to any sub-class of Locator.

An EssenceDescriptor may have more than one Locator objects and an EssenceDescriptor may have more than
one Locator object of the same sub-class of Locator. For example, a file SourceMob may have more than one
Locator to provide hints to find the file on more than one operating system or to provide more than one hint on
the same operating system.
Informative note: Locators in a file SourceMobs provide hints to help find files associated with the file SourceMob, but they
are only hints because their correctness cannot be guaranteed, since users may rename or delete files. Typically, this can
happen if the AAF file is renamed after being created. If an application cannot find a file by using the hint, it can search
through all accessible AAF files to find the EssenceData object with the MobID value.

10.2 FileDescriptor class

The FileDescriptor class describes an essence source that is directly manipulated by an AAF application.

The FileDescriptor class is a sub-class of the EssenceDescriptor class.

The FileDescriptor class is an abstract class.

FileDescriptor
SampleRate : Rational
Length : LengthType

ContainerFormat

CodecDefinition

ContainerDefinition

CodecDefinition

EssenceDescriptor

Property Name Type Req ? Meaning
SampleRate Rational Req – see

conditional rule 1
The sample rate of the essence

Length LengthType Req – see
conditional rule 1

Duration of the essence in sample units

ContainerFormat WeakReference to
ContainerDefinition

Opt – see
conditional rule 2

Identifies the container mechanism used to store the essence

CodecDefinition WeakReference to Opt Identifies the mechanism used to compress and uncompress samples of

AAF Object Specification 1.1

Page 72 of 136 pages

Property Name Type Req ? Meaning
CodecDefinition essence or used to convert samples of essence from one format to another

Conditional rule 1 FileDescriptors describing static essence shall omit the SampleRate and Length properties.
FileDescriptors describing time-varying essence shall specify the SampleRate and Length
properties.

Conditional rule 2 ContainerFormat shall be specified.

Informative note: The Req/Opt status of SampleRate, Length and ContainerFormat is the result of maintaining compatibility
with the MetaDictionary used by the AAF reference implementation v1.0.1.
The File Descriptor specifies the sample rate and the length in the sample rate of the essence. The sample rate
of the data can be different from the edit rate of the Timeline MobSlot in the File SourceMob.
Informative note: In the case of picture essence, the Sample Rate is usually the frame rate. The value should be
numerically exact, for example {25,1} or {30000, 1001}.

Informative note: Care should be taken if a sample rate of {2997,100} is encountered, since this may have been intended
as a (mistaken) approximation to the exact value.

10.3 DigitalImageDescriptor class

The DigitalImageDescriptor class specifies that a File SourceMob is associated with video essence that is
formatted either using RGBA or luminance/chrominance formatting.

The DigitalImageDescriptor class is a sub-class of the FileDescriptor class.

The DigitalImageDescriptor class is an abstract class.

 AAF Object Specification v1.1

 Page 73 of 136 pages

FileDescriptor

DigitalImageDescriptor
Compression : AUID
StoredHeight : UInt32
StoredWidth : UInt32
StoredF2Offset : Int32
SampledHeight : UInt32
SampledWidth : UInt32
SampledXOffset : Int32
SampledYOffset : Int32
DisplayHeight : UInt32
DisplayWidth : UInt32
DisplayXOffset : Int32
DisplayYOffset : Int32
DisplayF2Offset : Int32
FrameLayout : LayoutType
VideoLineMap : Int32Array
ImageAspectRatio : Rational
ActiveFormatDescriptor : UInt8
AlphaTransparency : AlphaTransparencyType
ImageAlightmentFactor : UInt32
FieldDominance : FieldNumber
FieldStartOffset : UInt32
FieldEndOffset : UInt32
ColorPrimaries : ColorPrimariesType
CodingEquations : CodingEquationType
TransferCharacteristic : TransferCharacteristicType
SignalStandard : SignalStandardType

Property Name Type Req ? Meaning Default
Compression AUID Opt – see

conditional
rule 1

Kind of compression and format of compression information. Un-
compressed

StoredHeight UInt32 Req Number of pixels in vertical dimension of stored view
StoredWidth UInt32 Req Number of pixels in horizontal dimension of stored view

StoredF2Offset Int32 Opt Specifies a topness adjustment for the stored picture. Valid
values are 0 or –1.

0

SampledHeight UInt32 Opt – see
conditional

rule 2

Number of pixels in vertical dimension of sampled view StoredHeight

SampledWidth UInt32 Opt – see
conditional

rule 2

Number of pixels in horizontal dimension of sampled view StoredWidth

SampledXOffset Int32 Opt – see
conditional

rule 2

X offset, in pixels, from top-left corner of stored view 0

SampledYOffset Int32 Opt – see
conditional

rule 2

Y offset, in pixels from top-left corner of stored view 0

AAF Object Specification 1.1

Page 74 of 136 pages

Property Name Type Req ? Meaning Default
DisplayHeight UInt32 Opt – see

conditional
rule 3

Number of pixels in vertical dimension of display view StoredHeight

DisplayWidth UInt32 Opt – see
conditional

rule 3

Number of pixels in vertical dimension of display view StoredWidth

DisplayXOffset Int32 Opt – see
conditional

rule 3

X offset, in pixels, from top-left corner of sampled view 0

DisplayYOffset Int32 Opt – see
conditional

rule 3

Y offset, in pixels, from top-left corner of sampled view 0

DisplayF2Offset Int32 Opt Specifies a topness adjustment for the displayed picture. Valid
values are 0 or 1.

0

FrameLayout LayoutType Req Describes whether all data for a complete sample is in one
frame or is split into more than one field

VideoLineMap Int32Array Req Specifies the scan line in the analog source that corresponds
to the beginning of each digitized field. For single-field video,
there is 1 value in the array; for interlaced video, there are 2

values in the array.

ImageAspectRatio Rational Req Describes the ratio between the horizontal size and the vertical
size in the intended final image

ActiveFormatDescriptor UInt8 Opt Specifies the desired framing of the content within the
displayed image (4:3 in 16:9 etc.). The value exactly matches

the active_format element defined by ETSI TS 102 154.

Unspecified

AlphaTransparency AlphaTransparencyType Opt Specifies whether the minimum Alpha value or the maximum
Alpha value indicates transparency

minimum

ImageAlignmentFactor UInt32 Opt Specifies the alignment when storing the digital essence. For
example, a value of 16 means that the image is stored on 16-
byte boundaries. The starting point for a field will always be a

multiple of 16 bytes. If the field does not end on a 16-byte
boundary, the remaining bytes are unused.

1

FieldDominance FieldNumber Opt Specifies whether field 1 or field 2 is dominant in images
composed of two interlaced fields

FieldStartOffset UInt32 Opt Specifies unused bytes at the start of each video field 0
FieldEndOffset UInt32 Opt Specifies unused bytes at the end of each video field 0
ColorPrimaries ColorPrimariesType Opt Specifies the color primaries Unspecified

CodingEquations CodingEquationsType Opt Specifies the coding equations to convert RGB image
components to component color difference image components

Unspecified

TransferCharacteristic TransferCharacteristicType Opt Specifies the opto-electronic transfer characteristic Unspecified
SignalStandard SignalStandardType Opt Specifies the underlying signal standard used to define the

raster
Unspecified

Conditional rule 1 A DigitalImageDescriptor describing uncompressed essence shall omit the Compression
property. A DigitalImageDescriptor describing compressed essence shall specify the
Compression property. The Compression property specifies that the image is compressed
and the kind of compression used.

 AAF Object Specification v1.1

 Page 75 of 136 pages

Conditional rule 2 If a DigitalImageDescriptor has any of the sampled geometry properties, SampledHeight,
SampledWidth, SampledXOffset, and SampledYOffset, it shall have all of them.

Conditional rule 2 If a DigitalImageDescriptor has any of the display geometry properties, DisplayHeight,

DisplayWidth, DisplayXOffset, and DisplayYOffset, it shall have all of them.

The geometry properties describe the dimensions and meaning of the stored pixels in the image. The geometry
describes the pixels of an uncompressed image. Consequently, the geometry properties are independent of the
compression and subsampling.

Three separate geometries—stored view, sampled view, and display view—are used to define a set of different
views on uncompressed digital data. All views are constrained to rectangular regions, which means that storage
and sampling has to be rectangular.

The relationships among the views are described below.

Stored Data View Sampled Buffer View Displayed View
and Signal Raster

Display Width

S
to

re
d

H
ei

gh
t Total Width

Sampled Width

Stored Width

PX

PY

IEO

S
am

pl
ed

 H
ei

gh
t

To
ta

l H
ei

gh
t

D
is

pl
ay

 H
ei

gh
t

SX

SY

IAF

ISO

Sampled X,Y Offsets (SX,SY)

Display X,Y Offsets (DX,DY)DX

DY

VLM0

VLM1

D
is

pl
ay

F2
O

ff
se

t

St
or

ed
F2

O
ff

se
t

The stored view is the entire data region corresponding to a single uncompressed frame or field of the image,
and is defined by its horizontal and vertical dimension properties. The stored view may include data that is not
derived from, and would not usually be translated back to, analog data.

The sampled view is defined to be the rectangular dimensions in pixels corresponding to the digital data derived
from an analog or digital source. These pixels reside within the rectangle defined by the stored view. This would
include the image and auxiliary information included in the analog or digital source. For the capture of video
signals, the mapping of these views to the original signal is determined by the VideoLineMap property.

AAF Object Specification 1.1

Page 76 of 136 pages

The display view is the rectangular size in pixels corresponding to the viewable area. These pixels contain
image data suitable for scaling, display, warping, and other image processing. The display view offsets are
relative to the stored view, not to the sampled view.

Although typically the display view is a subset of the sampled view, it is possible that the viewable area may not
be a subset of the sampled data. It may overlap or even encapsulate the sampled data. For example, a subset
of the input image might be centered in a computer-generated blue screen for use in a chroma key effect. In this
case the viewable pixels on disk would contain more than the sampled image.

Each of these data views will have a width and height value. Both the sampled view and the display view also
have offsets relative to the top left corner of the stored view.

The FrameLayout property describes whether a complete image is contained in one full field or in two separate
fields.

The ImageAspectRatio describes the ratio between the horizontal size and the vertical size in the intended final
image.

The VideoLineMap specifies the relationship between the scan lines in the baseband signal and the beginning
of the digitized fields. The baseband lines are expressed in scan line numbers that are appropriate for the signal
format. For example, a typical 625-line two-field mapping might be {20,332}, where scan line 20 corresponds to
the first line of field 1, and scan line 332 corresponds to the first line of field 2. Notice that the numbers are
based on the whole frame, not on offsets from the top of each field, which would be {20,20}

A value of 0 is allowed only when computer-generated essence has to be treated differently. If the digital
essence was computer generated (RGB), the values may be either {0,1} (even field first) or {1,0} (odd field first).

The AlphaTransparency property determines whether the maximum alpha value or the 0 value indicates that the
pixel is transparent. If the property has a value of 1, then the maximum alpha value is transparent and a 0 alpha
value is opaque. If the property has a value of 0, then the maximum alpha value is opaque and the 0 alpha value
is transparent.

The StoredF2Offset property specifies a topness adjustment for the stored picture. The normal relationship
between stored and sampled rectangles is the same for both field 1 and field 2. In some cases, the stored
rectangle for field 1 starts with data from the interlaced line above the first line of field 2 (i.e., stored topness is
field 1 upper), even though the sampled rectangle begins with a line from field 2 (i.e., sampled topness is field 2
upper). Other combinations are also possible. To accommodate these cases, the StoredF2Offset property
adjusts the SampledYOffset for field 2 relative to that for field 1. If the property is not present, its value shall be
assumed to be 0. Valid values are 0 or -1. Non-zero values of StoredF2Offset invert the Stored Topness relative
to the Sampled Topness.
Informative note: StoredF2Offset is non-zero for MPEG-2 422P compression in 525 line systems
The DisplayF2Offset property specifies a topness adjustment for the displayed picture. RP187 defines the
Production Aperture as the maximum possible image extent (in common usage, Production Aperture refers to
the image extent at each stage of the production and transmission process). The RP187 Production Aperture is
usually the same as the active image aperture defined by the raster standard, but in some cases it may be
smaller. In other cases, transmission systems impose additional blanking upon the display. To accommodate
these cases, the DisplayF2Offset adjusts the number of lines that are blanked in field 2 relative to the number
blanked in field 1. If the property is not present, its value shall be assumed to be 0. Valid values are 0 or 1. Non-
zero values of DisplayF2Offset invert the display topness relative to the sampled topness.
Informative note: RP187 states that the 525-line Production Aperture begins at lines {21,283}, whereas SMPTE 125M
states that the Active Aperture starts at lines {20,283}.

RP187 blanking is typically recorded as follows:
Video Line Map = {16,278}, DisplayYOffset = 5, DisplayF2Offset = 0
The inferred Display Topness = Sampled Topness = field 2 upper.

SMPTE 125M blanking is typically recorded as follows:

 AAF Object Specification v1.1

 Page 77 of 136 pages

Video Line Map = {16,278}, DisplayYOffset = 4, DisplayF2Offset = 1
The inferred Sampled Topness = field 2 upper, but Display Topness is inverted (field 1 upper).

10.4 CDCIDescriptor class

The CDCIDescriptor class specifies that a file SourceMob is associated with video essence formatted with one
luminance component and two color-difference components as specified in this document.
Informative note: This format is commonly known as YCbCr.
The CDCIDescriptor class is a sub-class of the DigitalImageDescriptor class.

A CDCIDescriptor object shall be owned by a file SourceMob.

DigitalImageDescriptor

CDCIDescriptor

HorizontalSubsampling : UInt32
VerticalSubsampling : UInt32
ComponentWidth : UInt32
AlphaSamplingWidth : UInt32
PaddingBits : Int16
ColorSiting : ColorSitingType
BlackReferenceLevel : UInt32
WhiteReferenceLevel : UInt32
ColorRange : UInt32
ReversedByteOrder : Boolean

Property Name Type Req
? Meaning Default

HorizontalSubsampling UInt32 Req Specifies the ratio of luminance sampling to chrominance sampling in the
horizontal direction. For 4:2:2 video, the value is 2, which means that there are

twice as many luminance values as there are color-difference values. Legal
values are 1, 2 and 4.

VerticalSubsampling UInt32 Opt Specifies the ratio of luminance sampling to chrominance sampling in the
vertical direction

1

ComponentWidth UInt32 Req Specifies the number of bits used to store each component. Can have a value
of 8, 10, or 16. Each component in a sample is packed contiguously; the

sample is filled with the number of bits specified by the optional PaddingBits
property. If the PaddingBits property is omitted, samples are packed

contiguously.

AlphaSamplingWidth UInt32 Opt Specifies the number of bits used to store the Alpha component 0
PaddingBits Int16 Opt Specifies the number of bits padded to each pixel 0
ColorSiting ColorSitingType Opt Specifies color siting Co-sited

BlackReferenceLevel UInt32 Opt Specifies the digital luminance component value associated with black e.g. 16
or 64 (8 or 10-bits)

0

WhiteReferenceLevel UInt32 Opt Specifies the digital luminance component value associated with white e.g.
235 or 940 (8 or 10 bits)

Max unsigned
integer value for
component size

AAF Object Specification 1.1

Page 78 of 136 pages

Property Name Type Req
? Meaning Default

ColorRange UInt32 Opt Specifies the range of allowable digital chrominance component values e.g.
225 or 897 (8 or 10 bits)

Max unsigned
integer value for
component size

ReversedByteOrder Boolean Opt Specifies whether the luma and chroma sample order is reversed relative to
the order defined by ITU-R BT.601. The value is False if the sample order

conforms conforms to ITU-R BT.601, or True if the order is reversed (i.e., the
luma sample precedes the chroma).

False

10.5 RGBADescriptor class

The RGBADescriptor class specifies that a File SourceMob is associated with video essence formatted with
three color component or with three color components and an alpha component as specified in this document.

The RGBADescriptor class is a sub-class of the DigitalImageDescriptor class.

An RGBADescriptor object shall be owned by a file SourceMob.

DigitalImageDescriptor

RGBADescriptor

PixelLayout : RGBALayout
Palette : DataValue
PaletteLayout : RGBALayout
ComponentMinRef : UInt32
ComponentMaxRef : UInt32
AlphaMinRef : UInt32
AlphaMaxRef : UInt32
ScanningDirection : ScanningDirectionType

Property Name Type Req ? Meaning Default
PixelLayout RGBALayout Req Specifies the order and size of the components within

the pixel

Palette DataValue Opt – see
conditional rule

1

An array of color values that are used to specify an
image

PaletteLayout RGBALayout Opt – see
conditional rule

1

An array of RGBAComponent that specifies the order
and size of the color components as they are stored in

the palette

ComponentMinRef UInt32 Opt Minimum value for RGB components e.g. 16 or 64 (8 or
10-bits)

0

ComponentMaxRef UInt32 Opt Maximum value for RGB components e.g. 16 or 64 (8
or 10-bits)

255

AlphaMinRef UInt32 Opt Minimum value for alpha component e.g. 16 or 64 (8 or
10-bits)

0

 AAF Object Specification v1.1

 Page 79 of 136 pages

Property Name Type Req ? Meaning Default
AlphaMaxRef UInt32 Opt Maximum value for alpha component e.g. 16 or 64 (8 or

10-bits)
255

ScanningDirection ScanningDirectionType Opt Specifies the scanning direction of the image. The value
exactly matches the equivalent property in SMPTE

268M.

LeftToRightTopToBottom

Conditional rule 1 If the PixelLayout property includes a ‘P’, then the RGBADescriptor object shall have the
Palette and PaletteLayout properties.

If the PixelLayout property includes an ‘R’, ‘G’, or ‘B’, then it shall not include a ‘P’. If the PixelLayout property
includes a ‘P’, then it shall not include an ‘R’, ‘G’, or ‘B’.

An RGBADescriptor object describes essence that contains component-based images where each pixel is made
up of a red, a green and a blue value. Optionally, an alpha value can be included in each pixel. The alpha value
determines the transparency of the color. Each pixel can be described directly with a component value or a by
an index into a pixel palette.

Properties in the RGBADescriptor allow you to specify the order that the color components are stored in the
image, the number of bits needed to store a pixel, and the bits allocated to each component.

If a color palette is used, the descriptor allows you to specify the color palette and the structure used to store
each color in the palette.

10.6 TapeDescriptor class

The TapeDescriptor class describes audio tape or video tape media.

The TapeDescriptor class is a sub-class of the EssenceDescriptor class.

A TapeDescriptor object shall be owned by a physical SourceMob.

EssenceDescriptor

TapeDescriptor
FormFactor : TapeCaseType
VideoSignal : VideoSignalType
TapeFormat : TapeFormatType
Length : UInt32
Manufacturer : String
Model : String
TapeBatchNumber : String
TapeStock : String

Property Name Type Req ? Meaning
FormFactor TapeCaseType Opt Describes the physical size of the tape
VideoSignal VideoSignalType Opt Describes the video signal type

AAF Object Specification 1.1

Page 80 of 136 pages

Property Name Type Req ? Meaning
TapeFormat TapeFormatType Opt Describes the format of the tape

Length UInt32 Opt Tape capacity in minutes
Manufacturer String Opt Text string to display to end users, identifying the manufacturer of the tape

Model String Opt Text string to display to end users, identifying the manufacturer’s brand designation of the tape
TapeBatchNumber String Opt Specifies the batch number of the tape

TapeStock String Opt Specifies the string identifying the tape stock

10.7 FilmDescriptor class

The FilmDescriptor class describes film media.

The FilmDescriptor class is a sub-class of the EssenceDescriptor class.

A FilmDescriptor object shall be owned by a physical SourceMob.

EssenceDescriptor

FilmDescriptor
FilmFormat : FilmType
FrameRate : UInt32
PerforationsPerFrame : UInt8
FilmAspectRatio : Rational
Manufacturer : String
Model : String
FilmGaugeFormat : String
FilmBatchNumber : String

Property Name Type Req
? Meaning

FilmFormat FilmType Opt Identifies the format of the film
FrameRate UInt32 Opt Specifies the frame rate in frames per second

PerforationsPerFrame UInt8 Opt Specifies the number of perforations per frame on the film stock
FilmAspectRatio Rational Opt Ratio between the horizontal size of the frame image and the vertical size of the frame image

Manufacturer String Opt A string to display to end users, indicating the manufacturer of the film
Model String Opt A string to display to end users, indicating the manufacturer’s brand designation for the film, such as

“5247”
FilmGaugeFormat String Opt Specifies the film gauge format
FilmBatchNumber String Opt Specifies the batch number of the tape

 AAF Object Specification v1.1

 Page 81 of 136 pages

11 Non-normative Essence Types
This chapter includes the class specifications for classes in the Non-normative Essence Types package. (Non-
normative essence types are defined by industry specifications, and are not described by international
standards). Figure 20 shows the class hierarchy for the Non-normative Essence Types package.

The class specification pages are presented in order according to the class hierarchy, reading the Figure left to
right, depth-first.

TIFFDescriptorAIFCDescriptorWAVEDescriptor

Non-normative
essence types

FileDescriptor

Figure 20 Non-normative essence types Package

11.1 WAVEDescriptor class

The WAVEDescriptor class specifies that a File SourceMob is associated with audio essence formatted
according to the RIFF Waveform Audio File Format (WAVE).

The WAVEDescriptor class is a sub-class of the FileDescriptor class.

A WAVEDescriptor object shall be owned by a file SourceMob.

FileDescriptor

WAVEDescriptor
Summary : DataValue

Property Name Type Req ? Meaning
Summary DataValue Req A copy of the WAVE file information without the sample data

A WAVEDescriptor describes a WAVE file containing digitized audio data in little-endian byte order. It contains
data formatted according to the Microsoft/IBM Multimedia Programming Interface and Data Specifications,
Version 1.0, but limited to the section describing the RIFF Waveform Audio File Format audio data. The WAVE
file information (without the sample data) is duplicated in the WAVE Audio Descriptor Summary property to
make it more efficient to access this information.

AAF Object Specification 1.1

Page 82 of 136 pages

11.2 AIFCDescriptor class

The AIFCDescriptor class specifies that a File SourceMob is associated with audio essence formatted according
to the Audio Interchange File Format with Compression (AIFC).

The AIFCDescriptor class is a sub-class of the FileDescriptor class.

An AIFCDescriptor object shall be owned by a file SourceMob.

FileDescriptor

AIFCDescriptor
Summary : DataValue

Property Name Type Req ? Meaning
Summary DataValue Req A copy of the descriptive information in the associated AIFC Audio Data value

11.3 TIFFDescriptor class (optional)

The TIFFDescriptor class specifies that a File SourceMob is associated with video essence formatted according
to the TIFF specification.

The TIFFDescriptor class is a sub-class of the FileDescriptor class.

A TIFFDescriptor object shall be owned by a file SourceMob.

FileDescriptor

TIFFDescriptor
IsUniform : Boolean
IsContiguous : Boolean
LeadingLines : Int32
TrailingLines : Int32
JPEGTableID : JPEGTableIDType
Summary : DataValue

Property Name Type Req ? Meaning Default
IsUniform Boolean Req True for data having the same number of rows per strip throughout

IsContiguous Boolean Req True for data stored in contiguous bytes
LeadingLines Int32 Opt Number of leading lines to be thrown away 0

 AAF Object Specification v1.1

 Page 83 of 136 pages

Property Name Type Req ? Meaning Default
TrailingLines Int32 Opt Number of trailing lines to be thrown away 0
JPEGTableID JPEGTableIDType Opt Registered JPEG table code or JT_NULL

Summary DataValue Req A copy of the TIFF IFD (without the sample data)

AAF Object Specification 1.1

Page 84 of 136 pages

12 Compressed Picture Essence Types
This chapter is reserved for future Essence Descriptors.

13 Sound Essence Types
This chapter includes the class specifications for classes in the Sound Essence Types package. Figure 21
shows the class hierarchy for the Sound Essence Types package.

The class specification pages are presented in order according to the class hierarchy, reading the Figure left to
right, depth-first.

PCMDescriptor

Sound essence
types

SoundDescriptor

Figure 21 Sound essence types Package

13.1 SoundDescriptor class

The SoundDescriptor class specifies that a File SourceMob is associated with audio essence.

The SoundDescriptor class is a sub-class of the FileDescriptor class.

A SoundDescriptor object shall be owned by a file SourceMob.

FileDescriptor

SoundDescriptor
AudioSamplingRate : Rational
Locked : Boolean
AudioRefLevel : Int8
ElectroSpatial : ElectroSpatialFormulation
Channels : UInt32
QuantizationBits : UInt32
DialNorm : Int8
Compression : AUID

Property Name Type Req ? Meaning
AudioSamplingRate Rational Req Sampling rate of the audio essence

 AAF Object Specification v1.1

 Page 85 of 136 pages

Property Name Type Req ? Meaning
Locked Boolean Opt True if the number of samples per frame is locked

AudioRefLevel Int8 Opt Audio reference level, specifying the number of dBm for 0VU
ElectroSpatial ElectroSpatialFormulation Opt Electro-spatial formulation of the audio essence, e.g. mono, dual mono,

stereo etc.
Informative note: These values are identical to values defined in AES-3

(r1997)
Channels UInt32 Req Number of audio channels

QuantizationBits UInt32 Req Number of quantization bits
DialNorm Int8 Opt Gain to be applied to normalize perceived loudness of the sound, defined by

ITU-R Recommendation BS.1196 (1dB per step)
Compression AUID Opt – see

conditional rule 1
Kind of compression and format of compression information.

Conditional rule 1 A SoundDescriptor describing uncompressed essence shall omit the Compression property.
A SoundDescriptor describing compressed essence shall specify the Compression
property. The Compression property specifies that the sound is compressed and the kind of
compression used.

13.2 PCMDescriptor class

The PCMDescriptor class specifies that a File SourceMob is associated with audio essence formatted according
to the BWF File Format.

The PCMDescriptor class is a sub-class of the SoundDescriptor class.

A PCMDescriptor object shall be owned by a file SourceMob.

SoundDescriptor

PCMDescriptor
BlockAlign : UInt16
SequenceOffset : UInt8
AverageBPS : UInt32
ChannelAssignment : AUID
PeakEnvelopeVersion : UInt32
PeakEnvelopeFormat : UInt32
PointsPerPeakValue : UInt32
PeakEnvelopeBlockSize : UInt32
PeakChannels : UInt32
PeakFrames : UInt32
PeakOfPeaksPosition : PositionType
PeakEnvelopeTimestamp : Timestamp
PeakEnvelopeData : Stream

Property Name Type Req
? Meaning Default

AAF Object Specification 1.1

Page 86 of 136 pages

Property Name Type Req
? Meaning Default

BlockAlign Uint16 Req Sample block alignment
SequenceOffset Uint8 Opt Zero-based ordinal frame number of first

essence data within five-frame sequence

AverageBPS Uint32 Req Average Bytes per second
ChannelAssignment AUID Opt Channel assignment in use, e.g. AUID identifying SMPTE 320M-B SMPTE

320M-B
PeakEnvelopeVersion UInt32 Opt Peak envelope version information None
PeakEnvelopeFormat UInt32 Opt Format of a peak point None
PointsPerPeakValue UInt32 Opt Number of peak points per peak value None

PeakEnvelopeBlockSize UInt32 Opt Number of audio samples used to generate each peak frame None
PeakChannels UInt32 Opt Number of peak channels None
PeakFrames UInt32 Opt Number of peak frames None

PeakOfPeaksPosition PositionType Opt Offset to the first audio sample whose absolute value is the maximum value of the
entire audio file

None

PeakEnvelopeTimestamp Timestamp Opt Time stamp of the creation of the peak data None
PeakEnvelopeData Stream Opt Peak envelope data None

BWF <fmt> and <bext> chunks are defined by EBU Tech 3285-2001; <levl> is defined by EBU Tech 3285
Supplement 3-2001.

An AAF file describing a BWF source shall map certain items of BWF metadata into the AAF object model; other
items of BWF metadata may optionally be mapped. The following table defines the mapping requirements
between items of BWF metadata and corresponding properties within the AAF object model.

Chunk Field AAF property Mapping status
nSamplesPerSec FileDescriptor::SampleRate Req

wFormatTag SoundDescriptor::Compression Req
nChannels SoundDescriptor::Channels Req

wBitsPerSample SoundDescriptor::QuantizationBits Req
nAvgBytesPerSec PCMDescriptor::AverageBPS Req

<fmt>

nBlockAlign PCMDescriptor::BlockAlign Req
UMID[0-31] file SourceMob::MobID Req

OriginationDate/Time file SourceMob::CreationTime Req
<bext>

TimeReference(Low/High) file SourceMob TimelineMobSlot::Origin Req
dwVersion PCMDescriptor::PeakEnvelopeVersion Opt
dwFormat PCMDescriptor::PeakEnvelopeFormat Opt

dwPointsPerValue PCMDescriptor::PointsPerPeakValue Opt
dwBlockSize PCMDescriptor::PeakEnvelopeBlockSize Opt

dwPeakChannels PCMDescriptor::PeakChannels Opt
dwNumPeakFrames PCMDescriptor::PeakFrames Opt

<levl>

dwPosPeakOfPeaks, extended to 64 bits PCMDescriptor::PeakOfPeaksPosition Opt

 AAF Object Specification v1.1

 Page 87 of 136 pages

Chunk Field AAF property Mapping status
strTimeStamp converted to TimeStamp PCMDescriptor::PeakEnvelopeTimestamp Opt

peak_envelope_data PCMDescriptor::PeakEnvelopeData Opt

14 Multiplexed Essence Types
This chapter is reserved for future Essence Descriptors.

15 Physical Essence Types
This chapter includes the class specifications for classes in the Physical Essence Types package. Figure 22
shows the class hierarchy for the Physical Essence Types package.

The class specification pages are presented in order according to the class hierarchy, reading the Figure left to
right, depth-first.

AuxiliaryDescriptorRecordingDescriptorImportDescriptor

Physical essence
types

PhysicalDescriptor

Figure 22 Physical essence types Package

15.1 PhysicalDescriptor class

The PhysicalDescriptor class describes an essence source that is not directly manipulated by an AAF
application.
Informative note: Although TapeDescriptor and FilmDescriptor also describe physical sources, and would logically be sub-
classes of PhysicalDescriptor, they remain sub-classes of EssenceDescriptor for compatibility with earlier versions of AAF.
The PhysicalDescriptor class is a sub-class of the EssenceDescriptor class.

The PhysicalDescriptor class is an abstract class.

EssenceDescriptor

PhysicalDescriptor

The PhysicalDescriptor class does not define any additional properties.

AAF Object Specification 1.1

Page 88 of 136 pages

15.2 ImportDescriptor class

The ImportDescriptor class describes a file essence source that is not directly manipulated by an AAF
application.
Informative note: Typically, an Import SourceMob is the source of a file SourceMob, where an application had imported a
file by application-specific means.
The ImportDescriptor class is a sub-class of the PhysicalDescriptor class.

An ImportDescriptor object shall be owned by a physical SourceMob.

PhysicalDescriptor

ImportDescriptor

The ImportDescriptor class does not define any additional properties.

15.3 RecordingDescriptor class

The RecordingDescriptor class describes the source of file source material which has no physical source.
Informative note: When no physical source exists for file source material, such as in the case of live recordings, a recording
source may be used to represent the source. A recording source is analogous to a tape source except that it does not
represent a source that physically existed. It is used to provide a timecode reference to file source material.
The RecordingDescriptor class is a sub-class of the PhysicalDescriptor class.

A RecordingDescriptor object shall be owned by a physical SourceMob.

PhysicalDescriptor

RecordingDescriptor

The RecordingDescriptor class does not define any additional properties.

15.4 AuxiliaryDescriptor class

The AuxiliaryDescriptor class specifies describes an auxiliary file essence source.

The AuxiliaryDescriptor class is a sub-class of the PhysicalDescriptor class.

An AuxiliaryDescriptor object shall be owned by a physical SourceMob.

 AAF Object Specification v1.1

 Page 89 of 136 pages

PhysicalDescriptor

AuxiliaryDescriptor
MimeType : String
CharSet : String

Property
Name Type Req

? Meaning

MimeType String Req Specifies the registered mimetype of the data in the auxiliary file, according to RFC 2046 (MIME Media Types) and
RFC 2048 (MIME Registration Procedures).

CharSet String Opt Specifies the registered character set used by the internal and external representation of the data as defined in RFC
2048 and http://www.iana.org/assignments/character-sets. Example: L"ISO-8859-1"

16 Reserved
This chapter is reserved for future Class definitions.

17 Reserved
This chapter is reserved for future Class definitions.

18 Reserved
This chapter is reserved for future Class definitions.

19 Reserved
This chapter is reserved for future Class definitions.

AAF Object Specification 1.1

Page 90 of 136 pages

20 Operational Pattern identifiers
This chapter lists the Operational Pattern identifiers defined in the AAF reference implementation.

20.1 Operational Pattern identifiers

Operational Pattern Meaning
kAAFOPDef_EditProtocol Operational pattern is AAF Edit Protocol

21 Built-In Types
This chapter specifies the Types which are built in to the AAF reference implementation, including the controlled
sets of enumerated values.

The Type specifies the data type of property values and of parameters.

The Type is identified by a globally unique integer. The following table lists the data types by name.

21.1 Basic and Structured Types

Data Type Meaning
AUID A 16-byte unique identifier whose value is a SMPTE 298M Universal Label or a UUID or GUID

AUIDArray Array of 16-byte unique identifiers
Boolean Specifies either True or False.

Char Specifies a single character value.
DataValue Specifies essence or a block of data whose type is specified by a data kind.

Int8 Specifies an 8-bit 2's complement integer value.
Int8Array Specifies an array of Int8 values.

Int16 Specifies a 16-bit 2's complement integer value.
Int16Array Specifies an array of Int16 values.

Int32 Specifies a 32-bit 2's complement integer value.
Int32Array Specifies an array of Int32 values.

Int64 Specifies a 64-bit 2's complement integer value.
Int64Array Specifies an array Int64 values.

JPEGTableIDType Specifies the JPEG tables used in compressing TIFF data.
LengthType Specifies the length of a Component with an Int64.
MobIDType Specifies a 32-byte unique identifier that can hold a SMPTE UMID.

PixelRectangle Specifies of Rectangle in pixels. Is Record with the following elements:
Horizontal: UInt16
Vertical: UInt16

PositionType Specifies an offset into a Component with an Int64.
PhaseFrameType Specifies the phase within the repeating pulldown pattern of the first frame after the pulldown conversion. A value of 0

specifies that the Pulldown object starts at the beginning of the pulldown pattern.
Rational Specifies a rational number by means of an Int32 numerator and an Int32 denominator.

RationalRectangle Specifies an area within an image with 4 rationals, where the first two rationals specify the horizontal and vertical position of

 AAF Object Specification v1.1

 Page 91 of 136 pages

Data Type Meaning
the upper-left corner of the rectangle and the last two rationals specify the horizontal and vertical position of the lower-right
corner. The position of the center of the image is defined as (0/1, 0/1) (rounding up and to the left); the upper left pixel of

the image is (-1/1, -1/1); and the lower-right pixel of the image is (1/1, 1/1).
RGBAComponent Specifies a component within an RGBA pixel. Is a record with the following fields:

 Field Type Explanation
 Code RGBAComponentKind Enumerated value specifying component
 Size UInt8 Integer specifying the number of bits

String Specifies a string of Unicode characters
StrongReference Specifies an owned object, which is logically contained by the owning object.

StrongReferenceVector Specifies an ordered set of owned objects.
StrongReferenceSet Specifies an unordered set of owned uniquely identified objects.

TimeStamp Specifies a date and time in UTC (Universal Coordinated Time) using the following structure:
 Type TimeStamp Record {
 Type Date Record {
 Type Year Int16
 Type Month UInt8
 Type Day UInt8
 }
 Type Time Record {
 Type Hour UInt8
 Type Minute UInt8
 Type Second UInt8
 Type Fraction UInt8
 }
 }

Where Fraction is expressed in 1/100 of a second.
UInt8 Specifies an unsigned 8-bit integer value.

UInt8Array Specifies an array of unsigned 8-bit integer value.
UInt16 Specifies an unsigned 16-bit integer value.

UInt16Array Specifies an array of unsigned 16-bit integer value.
UInt32 Specifies an unsigned 32-bit integer value.

UInt32Array Specifies an array of unsigned 32-bit integer values.
UInt32Set Specifies a set of unsigned 32-bit integer values.

UInt64 Specifies an unsigned 64-bit integer value.
UInt64Array Specifies an array of 32-bit integer values.
VersionType Specifies a 2-byte unsigned version number.

WeakReference Reference to an object that defines a unique identifier
WeakReferenceVector Reference to an ordered set of uniquely identified objects

WeakReferenceSet Reference to an unordered set of uniquely identified objects

21.2 Enumerated Types

Data Type Meaning
ColorSitingType Specifies color siting as an enumerated UInt8. Values are

0 CoSiting The first luminance value of the image is co-sited with the first chrominance value.

AAF Object Specification 1.1

Page 92 of 136 pages

Data Type Meaning
1 Averaging The color pixel is sited at the point horizontally midway between the luminance pixels on each line.

2 ThreeTap Reserved.
3 Quincunx Color samples are sited at the point midway between two adjacent luminance pixels on two

adjacent lines, as in MPEG-1 4:2:0.
4 Rec601 Color samples are known to be sited in accordance with ITU-R BT.601.

255 UnknownSiting The siting of the color samples is unknown.
CompCodeArray Specifies the order in which the RGBA components are stored as an array of character. Each element in the array

represents a different color component. The array can contain the following characters:
‘A’ Alpha component
‘B’ Blue component
‘F’ Fill component

‘G’ Green component
‘P’ Palette code

‘R’ Red component
‘0’ no component

Each character except ‘0’ can appear no more than one time in the array. The array is terminated by a 0 byte and has a
maximum of 8 elements (including the terminating byte). Note that a byte with the ASCII ‘0’ indicates no component and

a byte with a 0 (ASCII NULL) terminates the string.
CompSizeArray Specifies the number of bits reserved for each component as an array of UInt8 in the order specified in the

CompCodeArray. The array is terminated by a 0 byte and has a maximum of 8 elements (including the terminating byte).
EdgeType Specifies the kind of film edge code as an enumerated UInt8. Values are:

0 EtNull Invalid edge code
1 EtKeycode Eastman Kodak KEYKODE TM format.

2 EtEdgenum4 edge code format: nnnn+nn.
3 EtEdgenum5 edge code format: nnnnn+nn.

EditHintType Specifies hints to be used when editing Control Points as an enumerated UInt8. Values are:
0 NoEditHint

1 Proportional
2 RelativeLeft

3 RelativeRight
4 RelativeFixed

ElectroSpatialFormulation Specifies electro-spatial formulation as an enumerated UInt8. Values are:
0 ElectroSpatialFormulation_Default

1 ElectroSpatialFormulation_TwoChannelMode
2 ElectroSpatialFormulation_SingleChannelMode

3 ElectroSpatialFormulation_PrimarySecondaryMode
4 ElectroSpatialFormulation_StereophonicMode

7 ElectroSpatialFormulation_SingleChannelDoubleSamplingFrequencyMode
8 ElectroSpatialFormulation_StereoLeftChannelDoubleSamplingFrequencyMode

9 ElectroSpatialFormulation_StereoRightChannelDoubleSamplingFrequencyMode
15 ElectroSpatialFormulation_MultiChannelMode

FadeType Specifies the type of the audio fade as an enumerated UInt8; may have one of the following values:
0 FadeNone No fade

1 FadeLinearAmp Linear amplitude fade
2 FadeLinearPower Linear power fade

Additional registered and private fade types may be defined.
FilmType Specifies the format of the film as an enumerated UInt8. Values are:

0 FtNull invalid film type
1 Ft35MM 35 millimeter film

 AAF Object Specification v1.1

 Page 93 of 136 pages

Data Type Meaning
2 Ft16MM 16 millimeter film
3 Ft8MM 8 millimeter film
4 Ft65MM 65 millimeter film

LayoutType Describes whether all data for a complete sample is in one frame or is split into more than one field as an enumerated
UInt8. Values are:

0 FullFrame a progressive lattice from top to bottom, stored in progressive line order 1,2,3,4,5,6... Example:
“480P59.94”. The duration of a Sampled Rectangle is a Frame.

1 SeparateFields an interlaced lattice divided into two fields, stored as two fields 1,3,5,… and 2,4,6... Field
1 scans alternate lines from top to bottom, field 2 scans the intervening lines. The second field is scanned at a later time

than the first field (one field later). Examples: NTSC, SMPTE 125M. The duration of a Sampled Rectangle is a Field.
2 OneField: an interlaced lattice as for SEPARATE_FIELDS above, except that only one field is scanned and

retained in the stored data, as 1,3,5,… or 2,4,6,… or (1+2),(3+4),(5+6),… For display, the second field is derived by line
replication or interpolation. There are no examples of SINGLE_FIELD in broadcast use; however, this type of sub-

sampling is often used as a simple compression for index frames. The duration of a Sampled Rectangle is a Frame.
3 MixedFields an interlaced lattice as for SEPARATE_FIELDS above, stored as a single matrix of

interleaved lines 1,2,3,4,5,6,… It is not common to use MIXED_FIELDS in broadcast; however, intermediate in-memory
data structures sometimes use this format. The duration of a Sampled Rectangle is a Frame.

4 SegmentedFrame an interlaced lattice divided into two fields. Field 1 scans alternate lines from top to
bottom, field 2 scans the intervening lines. The lines are stored as two fields 1,3,5,… 2,4,6,…The two fields are taken

from a single scan of the incoming image – i.e., they are coincident in time, except for the effects of shutter angle.
Example: “1080P24 SF”. The duration of a Sampled Rectangle is a Field.

ProductVersion Specifies the version number of an application. Consists of 4 UInt16 integer values followed by a UInt8. The first four
integers specify the major, minor, tertiary and patch level version numbers. The fifth integer has the following values:

0 VersionUnknown No additional version information
1 VersionReleased Released product

2 VersionDebug Development version
3 VersionPatched Released version with patches

4 VersionBeta Prerelease beta test version
5 VersionPrivateBuild Version not intended for general release

PulldownKindType Specifies whether the Pulldown object is converting from nominally 30 Hz or 25 Hz video frame rate and whether frames
are dropped or the video is played at another speed as an enumerated UInt8. Values are:

0 TwoThreePD Converting between nominally 30 Hz video frame rate and film frame rate by dropping or
adding frames

1 PALPD Converting between 25 Hz video frame rate and film frame rate by dropping or adding frames
2 OneToOneNTSC Converting between nominally 30 Hz video frame rate and film frame rate by speeding

up or slowing down the frame rate.
3 OneToOnePAL Converting between 25 Hz video frame rate and film frame rate by speeding up or

slowing down the frame rate.
4 VideoTapNTSC Converting between video frame rate and film frame rate by recording original film and

video sources simultaneously.
5 OneToOneHDSixty Converting between 60 Hz video frame rate and film frame rate by speeding up or

slowing down the frame rate.
6 TwentyFourToSixtyPD Converting between 60 Hz video frame rate and film frame rate by dropping

or adding frames.
7 TwoToOnePD Converting between video frame rate and film frame rate by dropping or adding frames

in the ratio 2:1
PulldownDirectionType Specifies whether the Pulldown object is converting from tape to film speed or from film to tape speed as an enumerated

UInt8. Values are:
0 TapeToFilmSpeed The InputSegment is at video frame rate and the Mob track owning the Pulldown object

is at film frame rate.
1 FilmToTapeSpeed The InputSegment is at film frame rate and the Mob track owning the Pulldown object is

at video frame rate.

AAF Object Specification 1.1

Page 94 of 136 pages

Data Type Meaning
RGBAComponentKind Enumerated type that specifies the color or function of a component within a pixel as an enumerated UInt8. May have

the following values:
0x52 ‘R’ Red component

0x47 ‘G’ Green component
0x42 ‘B’ Blue component
0x41 ‘A’ Alpha component

0x46 ‘F’ Fill component
0x50 ‘P’ Palette code

0x00 Terminates list of components
RGBALayout Specifies the order and size of the components within the pixel. The RGBALayout type is a fixed-size 8 element array,

where each element consists of the RGBAComponent type with the following fields:
Code Enumerated value specifying component

Size UInt8 integer specifying the number of bits
A Fill component indicates unused bits. After the components have been specified, the remaining Code and Size fields

should be set to 0.
ScanningDirectionType Describes the scanning direction of an image as an enumerated UInt8. Values are:

0 ScanningDirection_LeftToRightTopToBottom
1 ScanningDirection_RightToLeftTopToBottom
2 ScanningDirection_LeftToRightBottomToTop
3 ScanningDirection_RightToLeftBottomToTop
4 ScanningDirection_TopToBottomLeftToRight
5 ScanningDirection_TopToBottomRightToLeft
6 ScanningDirection_BottomToTopLeftToRight
7 ScanningDirection_BottomToTopRightToLeft

Informative note: The values of ScanningDirectionType match the equivalent type in SMPTE 268M.
SignalStandardType Specifies an underlying signal standard used to define the raster as an enumerated UInt8. Values are:

0 SignalStandard_None
1 SignalStandard_ITU601 525/625 line interlaced raster

2 SignalStandard_ITU1358 525/625 line progressive raster
3 SignalStandard_SMPTE347M 540 Mbit/s mappings

4 SignalStandard_SMPTE274M 1125 line raster
5 SignalStandard_SMPTE296M 720 line progressive raster

6 SignalStandard_SMPTE349M 1485 Mbit/s mappings
TapeCaseType Describes the physical size of the tape as an enumerated UInt8; may have one of the following values:

0 TapeCaseNull
1 ThreeFourthInchVideoTape

2 VHSVideoTape
3 8mmVideoTape

4 BetacamVideoTape
5 CompactCassette

6 DATCartridge
7 NagraAudioTape

TapeFormatType Describes the format of the tape as an enumerated UInt8; may have one of the following values:
0 TapeFormatNull
1 BetacamFormat

2 BetacamSPFormat
3 VHSFormat

4 SVHSFormat
5 8mmFormat

 AAF Object Specification v1.1

 Page 95 of 136 pages

Data Type Meaning
6 Hi8Format

TCSource Specifies the kind of timecode as an enumerated UInt8; may have one of the following values:
0 TimecodeLTC
1 TimecodeVITC

VideoSignalType Specifies the type of video signal on the videotape as an enumerated UInt8. Values are:
0 VideoSignalNull

1 NTSCSignal
2 PALSignal

3 SECAMSignal
Informative note: 3 SECAMSignal is not implemented in the AAF reference implementation
MetaDictionary

22 Built-In Data Definitions
This chapter specifies the Data Definitions which are built in to the AAF reference implementation.

22.1 Built-In Data Definitions

Data Definition Data Definition
alternative symbol Meaning

DataDef_Auxiliary Specifies auxiliary data
DataDef_DescriptiveMetadata Specifies descriptive metadata

DataDef_Edgecode DDEF_Edgecode Specifies a stream of film edge code values.
DataDef_LegacyPicture (deprecated) DDEF_Picture Specifies a stream of essence that contains image data.
DataDef_LegacySound (deprecated) DDEF_Sound Specifies a stream of essence that contains a single channel of sound.

DataDef_LegacyTimecode (deprecated) DDEF_Timecode Specifies a stream of tape timecode values.
DataDef_Matte DDEF_Matte Specifies a stream of essence that contains an image of alpha values.

DataDef_Picture Specifies a stream of essence that contains image data.
DataDef_PictureWithMatte DDEF_PictureWithMatte Specifies a stream of essence that contains image data and a matte.

DataDef_Sound Specifies a stream of essence that contains a single channel of sound.
DataDef_Timecode Specifies a stream of tape timecode values.

The AAF v1.0 data definition values of DataDef_LegacyPicture, DataDef_LegacySound and
DataDef_LegacyTimecode are deprecated in AAF v1.1. The AAF v1.1 data definition values of DataDef_Picture,
DataDef_Sound and DataDef_Timecode should be used instead. The deprecated values should only be used
when working with legacy AAF v1.0 files.

23 Built-In Extensible Enumerations
This chapter specifies the Extensible Enumerations which are built in to the AAF reference implementation.

23.1 Built-In Extensible Enumerations

AAF Object Specification 1.1

Page 96 of 136 pages

Data Type Meaning
Specifies the coding equations to convert RGB image components to component color difference image components

as an extendible enumeration (AUID); may have one of the following values:
CodingEquations_ITU601 Recommendation ITU-R BT.601 Coding Equations

E’Y = 0.587 E’G + 0.114 E’B + 0.299 E’R
E’PB = -0.331E’G + 0.500 E’B – 0.169 E’R
E’PR = -0.419 E’G – 0.081 E’B + 0.500 E’R

CodingEquations_ITU709 Recommendation ITU-R BT.709 Coding Equations
E’Y = 0.7152 E’G + 0.0722 E’B + 0.2126 E’R
E’PB = -0.3854E’G + 0.500 E’B – 0.1146 E’R
E’PR = -0.4542 E’G – 0.0458 E’B + 0.500 E’R

Informative note: Usage_CodingEquations_ ITU709 may also be used to identify SMPTE 274M and SMPTE 296M
coding equations, which are defined to be the same as ITU-R BT.709

CodingEquationsType

CodingEquations_SMPTE240M SMPTE 240M Coding Equations
E’Y = 0.701 E’G + 0.087 E’B + 0.212 E’R
E’PB = -0.384E’G + 0.500 E’B – 0.116 E’R
E’PR = -0.445 E’G – 0.055 E’B + 0.500 E’R

Informative note: CodingEquations_SMPTE240M is for legacy use only
Specifies the color primaries as an extendible enumeration (AUID); may have one of the following values:

ColorPrimaries_SMPTE170M SMPTE 170M Color Primaries
Primary x y

Green 0.310 0.595
Blue 0.155 0.070
Red 0.630 0.340

White D65 0.3127 0.3290
Informative note: ColorPrimaries_SMPTE170M may also be used to identify SMPTE 240M color primaries, which are

defined to be the same as SMPTE 170M
ColorPrimaries_ITU470_PAL Recommendation ITU-R BT.470 PAL Color Primaries

Primary x y
Green 0.29 0.60
Blue 0.15 0.06
Red 0.64 0.33

White D65 0.313 0.329

ColorPrimariesType

ColorPrimaries_ITU709 Recommendation ITU-R BT.709 Color Primaries
Primary x y

Green 0.300 0.600
Blue 0.150 0.060
Red 0.640 0.330

White D65 0.3127 0.3290
Informative note: ColorPrimaries_ ITU709 may also be used to identify SMPTE 274M and SMPTE 296M color

primaries, which are defined to be the same as ITU-R BT.709
Specifies the opto-electronic transfer characteristic as an extendible enumeration (AUID); may have one of the

following values:
TransferCharacteristicType

TransferCharacteristic_ITU470_PAL Recommendation ITU-R BT.470 PAL Transfer Characteristic
Assumed display gamma 2.8

 AAF Object Specification v1.1

 Page 97 of 136 pages

Data Type Meaning
TransferCharacteristic_ITU709 Recommendation ITU-R BT.709 Transfer Characteristic

V = 1.099 LC0.45 – 0.099 for 1 ≥ LC ≥ 0.018
V = 4.500 LC for 0.018 > LC ≥ 0

Informative note: TransferCharacteristic_ITU709 may also be used to identify SMPTE 170M, SMPTE 274M and
SMPTE 296M transfer characteristics, which are defined to be the same as ITU-R BT.709

TransferCharacteristic_SMPTE240M SMPTE 240M Transfer Characteristic
V = 4 LC for 0 ≤ LC ≤ 0.0228

V = 1.1115 LC0.45 – 0.1115 for 0.0228 ≤ LC ≤ 1
Informative note: TransferCharacteristic_SMPTE240M is for legacy use only

TransferCharacteristic_ITU1361 Recommendation ITU-R BT.1361 Transfer Characteristic
V = 1.099 LC0.45 – 0.099 for 0.018 ≤ LC < 1.33

V = 4.500 LC for -0.0045 ≤ LC < 0.018
V = - (1.099 (-4 LC)0.45 – 0.099) / 4 for -0.25 ≤ LC < -0.0045

TransferCharacteristic_linear Linear Transfer Characteristic
V = LC

UsageType Specifies the usage of a Mob as an extendible enumeration (AUID); may have one of the following values:
Usage_SubClip Mob is a CompositionMob used as a sub-clip

Usage_AdjustedClip Mob is a CompositionMob used as an adjusted clip
Usage_TopLevel Mob is a CompositionMob used as a top-level composition

Usage_LowerLevel Mob is a CompositionMob used as a lower-level composition
Usage_Template Mob is a MasterMob with no sources

24 Built-In OperationDefinitions
This chapter is reserved for OperationDefinitions.

25 Tutorial on Compositions
This chapter describes the AAF Composition Mob, which is the AAF class that describes editing information.

25.1 Composition Mob Basics

Composition Mobs describe the creative editing and composing decisions that combine the individual pieces of
essence data into a unified program. A Composition Mob can describe editing decisions that vary in complexity
from very simple compositions, which combine a few pieces of essence in order, to very complex compositions
that have complex, layered effects and thousands of individual pieces of essence that are combined in various
ways. Composition Mobs are designed to be capable of describing creative human decisions; consequently,
their complexity is limited only by the limits of our imagination.

Composition Mobs do not directly reference the essence data that they combine to form a program. Composition
Mobs reference the basic essence data with SourceClips that identify the MasterMob and File SourceMobs that
describe the essence data. The MasterMobs and File SourceMobs have the information that is used to read and
write the essence data.

In addition to SourceClips, Composition Mobs can have Sequences, Effects, Transitions, and other objects that
combine or modify the basic essence data to produce the elements of essence data that go into the final
program. The essence data that results from these transformations can be stored in the file, but typically is
generated by the application from the basic essence data and is not stored until the distribution media is
generated from the Composition Mob.

AAF Object Specification 1.1

Page 98 of 136 pages

Composition Mobs consist of Slots that describe a set of editing decisions that can be referenced from outside of
the Mob. Slots in a Composition Mob typically describe sets of editing decisions that are combined in some form
to produce the final program.

Slots can describe timeline essence data, such as audio and video, static essence data, such as static images,
and other kinds of data, such as text or events.

A Composition Mob can have Slots that all describe timeline essence data, that all describe static essence data,
or that describe different kinds of essence data.

A simple Composition Mob could have two TimelineMobSlots describing audio data and one TimelineMobSlot
describing video data. The edited program produced by this Composition Mob would consist of three
synchronized tracks: two audio and one video.

Another simple Composition Mob could have one StaticMobSlot , describing a single static image composed by
combining a set of static images.

A complex Composition Mob could have TimelineMobSlots, StaticMobSlots, and EventMobSlots. The edited
program produced by this Composition Mob could have elements from each of these Slots combined in some
form by the objects in the Composition Mob.

25.2 TimelineMobSlots

TimelineMobSlots typically have a Sequence of audio or video segments. Each segment can consist of a simple
SourceClip or a complex hierarchy of Effects. Figure 23 below is a containment diagram of a Composition Mob
that has only TimelineMobSlots with audio and video data.

Composition Package

Timeline Slot1..n

{ordered}

Sequence

1..n

{ordered}

Transition Segment

Component

OperationGroup Filler NestedScope ScopeReference Sequence SourceClipSelector

Figure 23 Containment Diagram for a CompositionMob with TimelineMobSlots

 AAF Object Specification v1.1

 Page 99 of 136 pages

25.3 Sequences

A Sequence can have the following components:

• SourceClip: Specifies a section of essence or other time-varying data and identifies the Slot in another
Mob or within the same Mob that describes the essence.

• Filler: Specifies an unknown value for the Component’s duration. Typically, a Filler is used in a
Sequence to allow positioning of a Segment when not all of the preceding material has been specified.
Another typical use of Filler objects is to fill time in Slots and Nested Scope Segments that are not
referenced or played.

• Transition: Causes two adjacent Segments to overlap in time and to be combined by an effect.

• Operation Group: Specifies an effect to be used in a Composition Mob; specifies kind of effect, input
essence segments, and control arguments.

• Sequence: A Sequence within a Sequence combines a set of Components into a single segment, which
is then treated as a unit in the outer Sequence.

• Nested Scope: Defines a scope of slots that can reference each other. The Nested Scope object
produces the values of the last slot within it. Typically, Nested Scopes are used to enable layering or to
allow a component to be shared.

• Scope Reference: Refers to a section in a Nested Scope slot.

• Selector: Specifies a selected Segment and preserves references to some alternative Segments that
were available during the editing session. The alternative Segments can be ignored while playing a
Composition Mob because they do not effect the value of the Selector object and cannot be referenced
from outside of it. The alternative Segments can be presented to the user when the Composition Mob is
being edited. Typically, a Selector object is used to present alternative presentations of the same
content, such as alternate camera angles of the same scene.

The Sequence object combines a series of timeline Components in sequential order. If the Sequence has only
Segments, each Segment is played sequentially after the Segment that precedes it. The time in the Composition
Mob that a Segment starts is determined by the Components that precede it in the Sequence.

25.4 Transitions

A Transition can occur in a Sequence between two Segments. The Transition causes the preceding and
following Segments to overlap in time. The Transition specifies an effect that is used to combine the overlapping
Segments. Figure 24 below illustrates the Sequence containment showing Transition, which itself has an Effect.

AAF Object Specification 1.1

Page 100 of 136 pages

Sequence

Segment

1..*

{ordered}

OperationGroup Filler NestedScope ScopeReference Sequence SourceClip

Component

Transition

OperationGroup

{Transitions occur between
two Segments}

Selector

Figure 24 Containment Diagram for a Sequence with a Transition

Figure 25 below shows an instance diagram of a Sequence containing SourceClips and a Transition. It shows
the timeline view of the Sequence, in which the Transitions cause the two SourceClips to overlap.

 AAF Object Specification v1.1

 Page 101 of 136 pages

th = 100

urceClip

SourceClip

+Length : Length = 80

SourceClip

+Length : Length = 100

Composition Package

Timeline Slot

Sequence

+Length : Length = 230

Transition

+Length : Length = 75

SourceClip

+Length : Length = 125

SourceClip

Length : Length = 100

SourceClip

Length : Length = 125

SourceClip

Length : Length = 80

Transition

Length : Length = 75

SourceClip

Length : Length = 80
SourceClip

Length : Lengt

Transition

Length : Length = 75

Timeline View
0 .. .

AAF Object Specification 1.1

Page 102 of 136 pages

Figure 25 Timeline View of Overlapping Segments of a Transition

To calculate the duration of a Sequence with Transitions, you add the durations of the Segments and then
subtract the duration of the Transitions. In the example in the above Figure, the duration of the Sequence is 125
+ 100 + 80 — 75, which equals 230.

If you are inserting a Transition between two SourceClips, and you want to preserve the overall duration of the
two Segments, you must adjust the SourceClip’s Length and StartTime values.

25.4.1 Cuts and the Transition Cut Point
Transitions also specify a CutPoint. The CutPoint has no direct effect on the results specified by a Transition,
but the CutPoint provides information that is useful if an application wishes to remove or temporarily replace the
transition. The CutPoint represents the time within the Transition that the preceding Segment should end and
the following one begins, if you remove the Transition and replace it with a cut. To remove a Transition and
preserve the absolute time positions of both Segments, your application should trim the end of the preceding
Segment by an amount equal to the Transition Length minus the CutPoint offset, and trim the beginning of the
succeeding Segment by an amount equal to the CutPoint offset.

25.4.2 Treating Transitions As Cuts
If you cannot play a Transition’s effect, you should treat it as a cut. Treating it as a cut means that you should
play the two Segments surrounding the transition as if they had been trimmed, as described in the preceding
paragraphs. If you play the two Segments without trimming, the total elapsed time for them will be greater than it
should be, which can cause synchronization problems.

25.4.3 Restriction on Overlapping Transitions
Transitions can occur only between two Segments. In addition, the Segment that precedes the Transition and
the Segment that follows the Transition must each have a Length that is greater than or equal to the Length of
the Transition. If a Segment has a Transition before it and after it, the Segment’s Length must be greater than or
equal to the sum of the Length of each of the two Transitions. This ensures that Transitions do not overlap.
These restrictions allow applications to treat Transitions in a uniform manner and to avoid ambiguous
constructions.

It is possible to create Sequences that appear to start or end with Transitions or that appear to have overlapping
Transitions. To create the appearance of a Transition at the beginning of a Sequence, precede the Transition
with a Filler object that has the same length as the Transition. To create the appearance of a Transition at the
end of a Sequence, follow the Transition with a Filler object that has the same length as the Transition.

To create the appearance of overlapping Transitions, you nest the Transitions by using a Sequence within
another Sequence. You can put two Segments separated by a Transition in the inner Sequence. Then you can
use this Sequence object as the Segment before or after another Transition. The Transitions will appear to be
overlapping.

25.5 StaticMobSlots

StaticMobSlots describe Essence data that has no relationship to time. Consequently, StaticMobSlots do not
specify an edit rate and Segments in StaticMobSlots do not have a duration. Figure 26 below is a containment
diagram for a Composition Mob that has only StaticMobSlots.

 AAF Object Specification v1.1

 Page 103 of 136 pages

Composition Package

Static Slot1..n

{ordered}

Segment

OperationGroup NestedScope ScopeReference SourceClip Selector

Figure 26 Containment Diagram of a CompositionMob with StaticMobSlots

25.6 Combining Different Types of Slots

A Composition Mob can have TimelineMobSlots, StaticMobSlots, and EventMobSlots. Although each kind of
slot can only have Segments with the corresponding relationship to time (which is enforced by the presence or
absence of Length and Position properties), it is possible for a Slot to have a reference to another kind of Slot.
For example, a video TimelineMobSlot can have a reference to an image in a StaticMobSlot.

A Slot can reference a different kind of Slot by containing a SourceClip referencing the other Slot or by
containing an Effect with a SourceClip referencing the other Slot. The SourceClip can reference Slots in other
Mobs or can reference other Slots in the same Mob.

25.6.1 Conversion Operations
The SourceClip provides the conversion operation in some simple cases:

• Taking an instantaneous value (such as a still frame) from a Timeline Component.

• Repeating a Static Segment to create a Timeline Segment.

In these cases, the Data Kind of the two Segments must be the same. In all other cases, an explicit operation is
required. The Operation Definition must explicitly allow inputs of the appropriate temporal nature and produce a
result of the required temporal nature. Conversion operations are summarized in Table below.

Convert to: Static Event Timeline

AAF Object Specification 1.1

Page 104 of 136 pages

Convert from:

Static SourceClip plus
Operation

SourceClip (Start Time ignored)

Event SourceClip plus
Operation

 SourceClip plus Operation

Timeline SourceClip
(Length ignored)

SourceClip plus
Operation

25.7 Operations

Essence operation effects (such as transitions or chroma-key effects) can be used to modify or transform the
essence to produce a Segment of essence. Operations can act on and produce any kind of essence: timeline,
static, or event. The essence that an effect acts on is called its input essence. These effects use the same
binary plug-in model used to support codecs, essence handlers, or other digital processes to be used to process
the essence to create the desired impact. The binary plug-in model gives applications the flexibility to determine
when a given effect or codec has been referenced inside of the file and to determine if that effect or codec is
available, and if not, to find it and load it on demand.

Many common effects act on timeline or static essence and produce the same kind of essence as they act on.
For example, a picture-in-picture effect can act on either timeline video or static image essence. It combines two
input essence Segments to produce a resulting Segment. A picture-in-picture effect with timeline video input
essence Segments produces a timeline video result. A picture-in-picture effect with static image input essence
Segments produces a static image result. There are also effects than convert from one kind of essence to
another.

A specific usage of an effect in a file is described by an OperationGroup object. The OperationGroup that
produces a segment is made up of the following:

• Has an ordered set of input essence Segments.

• Is associated with an OperationDefinition object.

• Has a set of effect control parameters.

• May optionally have a rendered version of the Operation.

25.7.1 Effect Input Essence Segments
Most common effects have either one or two input essence Segments. Some effects can have more than two
input essence Segments, and there are effects that have no input essence Segments.

25.7.2 Filter Effects with One Input Essence Segment
An effect that has one input essence Segment is often called a filter effect because it takes its input essence
Segment, modifies it by passing it through some kind of filter, and then produces a resulting essence Segment.
Some example picture filter effects are a blur effect or a color correction effect. An example audio filter effect is a
gain effect.

If an application cannot generate a filter effect, it can usually substitute the input essence Segment for the effect
result and have a meaningful, if not completely accurate, output. You cannot substitute the input essence for
time-warp effects. Time-warp effects are timeline essence effects where the duration of the input essence
Segment is different from the duration of the effect result. Slow motion and freeze-frame effects are examples of
time-warp effects.

25.7.3 Effects with Two Input Essence Segments
Effects with two input essence Segments combine the Segments to produce a single resulting Segment. For
example, a picture-in-picture or a superimpose effect takes two images and combines them to produce a single
image.

 AAF Object Specification v1.1

 Page 105 of 136 pages

A transition effect is a timeline effect with two input essence Segments that are intended to change from one
input essence Segment to another. Examples of transition effects are wipes and audio crossfades. For more
information about effects in transitions, see the Transition Effects section in this chapter.

Some effects can have any number (greater than zero) of Segments. These effects typically are used to add
together a number of essence Segments. For example, the audio mixdown effect takes any number of audio
Segments and adds them to produce a combined audio Segment. Another example is the image ordering effect
that takes a set of pictures (static or timeline) and combines them by placing one in front of another in the order
in which they are specified.

25.7.4 Effect Definitions
Effects are identified by a AUID, a unique identifier. The file also contains an EffectDefinition object that
provides additional information about the effect. It identifies the effect it is defining with a AUID and includes the
following additional information:

• Effect name and description for display purposes

• Number of essence input segments

• Control code definitions that define the effect’s parameters

• Information to find plug-in code to process the effect

25.7.5 Effect Control Parameters
Effect controls are contained in a set of Parameters. Each Parameter identifies the purpose of the parameter by
specifying a parameter AUID and specifies either a single constant or a varying value. The Effect Definition lists
the parameters that can be specified for the Effect.

A constant value is specified by an ConstantValue object, which has a single value. For timeline effects, this
means the value is constant over time.

For timeline effects, a varying value is specified by a VaryingValue object, which specifies a value that varies
over time. Note that it is possible to define parameters whose value varies over a domain other than time. For
example, a color-correction effect can have a parameter whose value varies depending on the color space of a
pixel in an image.

A VaryingValue object specifies its values by containing an ordered set of Control Points. Each Control Point
specifies a value for a specific point in time. The Control Point identifies the point in time by specifying a rational
number where zero represents the time at the beginning of the effect and 1/1 represents the time at the end of
the effect.

A Varying Value specifies how to interpolate the effect between the time points whose value is specified by a
Control Point. A Varying Value can have linear, constant, B-Spline, logarithmic, or Bezier interpolation.

• Linear interpolation means that the parameter varies in a straight line between two values.

• Constant interpolation means that the parameter holds a constant value until the next Control Point is
reached.

• B-spline, logarithmic, and Bezier interpolations are mathematical formulas to create a curve between
two points.

If two Control Points specify the same time, the second defines the value at that time. The first is used only to
interpolate for times before the specified time.

If the first Control Point has a time greater than zero, its value is extrapolated as a constant backward to zero. If
the last Control Point has a time less than 1/1, its value is extrapolated as a constant forward to 1/1.

AAF Object Specification 1.1

Page 106 of 136 pages

25.7.6 Rendered Effect Essence
Sometimes it is desirable to compute the results of an Effect once and store them. When the Effect is being
played or accessed later, the results can be retrieved quickly and repeatedly without having to perform complex
calculations.

A rendered version is digital essence data that can be played to produce the effect. The Effect identifies a
rendered effect by containing a SourceClip that identifies the MasterMob and File SourceMob that describe the
rendered essence. If there is more than one implementation of a rendering, the MasterMob could have an
Essence Effect object.

25.7.7 Effects in Transitions
The Effect that is used in a Transition does not have any explicitly specified input essence Segments. Instead,
the Effect gets its input essence Segments from the Segment that precedes it and the Segment that follows the
Transition object in the Sequence.

In most cases, effects used in Transitions are defined to have two input essence Segments and a special-level
parameter. When an effect is used in a Transition, the following specify its behavior:

The outgoing essence is the first, or A, input essence Segment.

The incoming essence is the second, or B, input essence Segment.

If the level parameter is not explicitly specified, its default value is a Varying Value with two Control Points: a
value of zero at time zero, and a value of 1/1 at time 1/1.

Note that when an effect is used in a transition, it should not have any explicit input essence Segments. But an
effect in a Transition can override the default values for the level parameter.

25.8 Scope and References

Scope Reference objects enable you to reference from within one slot the values produced by another slot. A
Scope Reference can reference a Segment in a Nested Scope, or it can reference a Segment in another Slot. It
can refer to a Segment in the same Nested Scope that it is defined in or in an outer Nested Scope that has it.

Although Scope References can be used to reference other Slots in the same Mob, they should only be used to
reference Slots with the same data kind and the same relationship to time. If you need to reference a Slot with
another relationship with time, you should use a SourceClip than does not specify a MobID parameter.

25.8.1 Why Use Scope References
Two reasons to use Scope References are:

• To layer sections of essence that overlap.

• To share the values produced by a slot in different contexts.

Although you can layer overlapping sections of essence without using Scope References, you lose some
information that makes it harder for the user to make changes. For example, consider the following sequence of
shots that a user wants to appear in a production:

 1. A title superimposed on a long shot of a Mediterranean island.

 2. A shot of the star inserted in a picture-in-picture effect over the island shot.

 3. Ending with the island shot.

You could get this sequence of shots without using Scope References by creating the following Sequence:

 1. Effect for title effect with the SourceClip for the island shot.

 2. Effect for picture-in-picture effect.

 3. Another SourceClip for the island shot.

 AAF Object Specification v1.1

 Page 107 of 136 pages

Within each of the Effects, you would specify one of the input segments to have a SourceClip of the island shot.
The problem with this way of implementing the Sequence is that there are three SourceClips that refer to
adjacent sections of the same scene with no linkage indicated in the file. If you change the length of one of the
SourceClips or Effects, you need to change the other Segments in the Sequence to ensure continuity.

Alternatively, you could specify this with Nested Scope and Scope Reference objects where the Nested Scope
would contain:

• One slot that has the full island shot.

• One slot that had a Sequence containing the two Effects and a Scope Reference to the other slot. Each
of the Effects specifies one of its input essence Segments with a Scope Reference to the other slot.

The length of any of the Segments in the second slot can be changed without losing the continuity of the
background island scene. The user can also easily replace the background island scene and retain the edits in
the second slot.

Another reason to use Scope References is to share the values produced by one slot in different contexts. An
example of this is an effect that produces a rotating cube where each side of the cube shows the Segment from
a different Effect Slot. If you want some of the sides to show the same Segment, you can use Scope References
and put the desired Segment in another slot.

25.8.2 How to Specify Scope References
The Mob defines a scope consisting of the ordered set of Slots. A Scope Reference object in a Slot can specify
any Slot that precedes it within the ordered set. Nested Scope objects define scopes that are limited to the
Components contained within the Nested Scope object’s slots. A Scope Reference is specified with a relative
scope and a relative slot.

Relative scope is specified as an unsigned integer. It specifies the number of Nested Scopes that you must pass
through to find the referenced scope. A value of zero specifies the current scope, which is the innermost Nested
Scope object that has the Scope Reference or the Mob scope if no Nested Scope object has it. A relative scope
value of one specifies that you must pass through the Nested Scope object containing the Scope Reference to
find the Nested Scope or Mob scope that has it.

Relative slot is specified as a positive integer. It specifies the number of preceding slots that you must pass to
find the referenced slot within the specified relative scope. A value of one specifies the immediately previous
slot.

A Scope Reference object returns the same time-varying values as the corresponding section of the slot that it
references. The corresponding section is the one that occupies the same time period as the Scope Reference.

If a Scope Reference specifies a Slot, the corresponding section of the slot is the time span that has the
equivalent starting position from the beginning of the Slot and the equivalent length as the Scope Reference
object has within its Slot. If the specified Slot has a different edit rate from the Slot containing the Scope
Reference, the starting position and duration are converted to the specified Slot’s edit units to find the
corresponding section.

If a Scope Reference specifies a Nested Scope slot, the corresponding section of the slot is the one that has the
same starting position offset from the beginning of the Nested Scope segments and the same duration as the
Scope Reference object has in the specified scope.

25.9 Other Composition Mob Features

25.9.1 Preserving Editing Choices with Selectors
In some cases, an application may need to preserve alternatives that were presented to the user and not
chosen. For example, if a scene was shot with multiple cameras simultaneously, the user can choose the video
from the preferred camera angle. In a future editing session, the user may wish to change the video to one that
was shot from another camera. By preserving the original choices in the Composition Mob, your application can
make it easier for the user to find the alternatives.

AAF Object Specification 1.1

Page 108 of 136 pages

The Selector object specifies a selected Segment and a set of alternative Segments. When playing a
Composition Mob, an application treats the Selector object as if it were the selected Segment. However, when a
user wants to edit the Composition Mob, the application can present the alternative Segments as well as the
selected one.

25.9.2 Using Audio Fade In and Fade Out
The SourceClip FadeInLength, FadeInType, FadeOutLength, and FadeOutType properties allow you to specify
audio fades without an Effect object. Audio fades use these SourceClip properties instead of Effect properties of
the Effect for the following reasons:

• Some applications use audio fades on every Segment of audio to avoid noise when cutting from one
audio Segment to another. Using the SourceClip properties rather than Effect properties simplifies the
Composition Mob structure.

• Audio fades typically have simple controls arguments and do not need the time-varying control
arguments that are allowed in Effects.

However, if you want to create a crossfade, you need to do one of the following:

• Insert a Transition object with the MonoAudioMixdown effect between the two audio SourceClips to
cause them to overlap. If the FadeOutLength of the preceding SourceClip is not equal to the
FadeInLength of the following SourceClip, the crossfade will be asymmetric.

Specify the overlapping audio SourceClips as different input essence Segments in a MonoAudioMixdown of an
Effect.

26 Tutorial on Describing Essence
This chapter explains how AAF files describe essence.

26.1 Overview of Essence

AAF files can describe and contain a broad range of essence types and formats. These essence types include
the following:

• Video essence in various formats (RGBA, YCbCr)

• Sampled audio essence in various formats (AIFC, WAVE)

• Static image essence

In addition to the essence formats described in this document, this interchange specification provides a general
mechanism for describing essence formats and defines a plug-in mechanism that allows applications to import
and export new types of essence data.

This specification defines the metadata in structures that are independent of the storage details of the essence
format. This independence enables Composition Mobs to reference essence data independently of its format. A
Composition Mob describes editing decisions in a manner that is independent of the following:

• Byte order of the essence (AIFC and WAVE)

• Whether the essence data is contained within the file or is in another container file

• Whether the digital essence data is accessible

• Format or compression used to store the digital essence data

This interchange specification makes it easier for applications to handle different formats by providing a layer
that is common to all.

 AAF Object Specification v1.1

 Page 109 of 136 pages

Essence source information describes the format of audio and video digital data, how the digital data was
derived from tape or film, and the format of the tape and film. Source information can also include tape
timecode, film edgecode data, and pulldown information.

This interchange specification uses the following mechanisms to describe essence:

• MasterMobs provide a level of indirection between Composition Mobs and File SourceMobs and can
synchronize File SourceMobs.

• SourceMobs describe digital essence data stored in files or a physical media source such as videotape,
audio tape, and film. The SourceMob has the following objects that provide information about the
essence:

o Slots specify the number of tracks in the essence source, the duration of each track, the edit
rate, and the SourceMob that describes the previous generation of essence. In addition, Slots
can have timecode and edge code information.

o Essence Descriptors describe the kind of essence and the format of the essence and specify
whether the SourceMobs describe digital essence data stored in files or a physical media
source.

o Pulldown objects describe how essence is converted between a film speed and a video speed.

• Essence data objects contain the digital essence data and provide supplementary information such as
frame indexes for compressed digital essence data.

26.2 Describing Essence with MasterMobs

A MasterMob provides a level of indirection for accessing SourceMobs from Composition Mobs. The essence
associated with a SourceMob is immutable. Consequently, if you must make any changes to the essence data,
you must create a new SourceMob with a new unique MobID. Typical reasons to change the essence data
include redigitizing to extend the section of the essence included in the file, redigitizing to change the
compression used to create the digital essence data, and redigitizing to change the format used to store the
essence data, such as from AIFF audio data to WAVE audio data. A Composition Mob may have many
SourceClip objects that reference essence data updating every SourceClip in the Composition Mob each time
the essence is redigitized would be inefficient. By having the Composition Mob access a SourceMob only
through a MasterMob, this interchange specification ensures that you have to change only a single MasterMob
when you make changes to the essence data.

In addition, a MasterMob can synchronize essence data in different SourceMobs. For example, when an
application digitizes a videotape, it creates separate SourceMobs for the video and audio data. By having a
single MasterMob with one Slot for each SourceMob, the Composition Mob avoids having to synchronize the
audio and video tracks each time it references essence from different tracks of the videotape.

The same essence data can exist in more than one digital essence data implementation. Different
implementations represent the same original essence data but can differ in essence format, compression, or
byte order. If there are multiple implementations of digitized essence, the MasterMob can have an Essence
Group object. The Essence Group object has a set of SourceClip objects, each of which identifies a SourceMob
associated with a different implementation of the essence data. An application can examine these
implementations to find the one that it is able to play or that it can play most efficiently. Essence Groups may be
needed if you have systems with different architectures or compression hardware accessing a single
interchange file.

If, when an essence data file is redigitized, it has to be broken into multiple files, this can be represented by a
Sequence object in the MasterMob that has a series of SourceClip objects, each identifying the SourceMob
associated with one of the files.

Typically, MasterMobs have a very simple structure. They have an externally visible Slot for each track of
essence and do not have any other slots. Typically, each Slot has a single SourceClip object that identifies the

AAF Object Specification 1.1

Page 110 of 136 pages

SourceMob. MasterMobs cannot have Operation Groups, Nested Scopes, Selectors, Edit Rate Converters, or
Transitions.

The following lists the reasons for having a Slot in a MasterMob have an object other than a SourceClip:

• If there are multiple implementations of the same essence, the Slot can have an Essence Group instead
of a SourceClip object.

• If the essence source has been broken into several SourceMobs, the Slot can have a Sequence object.
The Sequence object cannot have any component other than a SourceClip object or an Essence Group
object.

• If one of a limited set of correction effects is applied to the essence data

Figure 27 below illustrates the containment diagram for a MasterMob describing timeline essence data, such as
audio or video.

Material Package

Timeline Slot1..*

Segment

SourceClip EssenceGroup SequenceOperationGroup

1..* SourceReference Segment1..*

Figure 27 Containment Diagram for a MasterMob with TimelineMobSlots

26.3 Describing Essence with SourceMobs

A SourceMob represents a file containing digitized essence or a physical media source, such as an audio tape,
film, or videotape.

If the essence described by the SourceMob has been derived from a previous generation of essence, the Slots
should have SourceClips that identify the Mob that describes the previous generation. If the SourceMob
describes essence that is not derived from a previous generation, the Slots should have zero-value SourceClips.

26.3.1 Sample Rate and Edit Rate in Timeline Essence
In many cases the sample rate and edit rate in a file SourceMob will be the same. However, it is possible to use
different edit rates and sample rates in a SourceMob. For example, you can create a SourceMob for digital
audio data, where the edit rate matches the edit rate of the associated video but the sample rate is much higher.

 AAF Object Specification v1.1

 Page 111 of 136 pages

The sample rate is specified in the SampleRate property in the File Descriptor . When accessing the digital
essence data, your application must convert from the edit rate to the sample rate.

26.3.2 The Source Origin in Timeline Essence
When an application accesses the digital essence data, it locates the starting position by measuring from a
position known as the source origin. Each file SourceMob indicates this position for each TimelineMobSlot in
order to provide a reference point for measurements of its essence data.

For example, when you first digitize the audio from a tape, your application would most likely assign a value of 0
to the Origin property. In this case the source origin corresponds to the beginning of the data. Any SourceClip
that references this audio will specify a StartTime value that is relative to the start of the essence.

However, the location of the origin does not necessarily correspond to the actual beginning of the source. For
example, if a user redigitizes the audio data in the previous example to add more data at the beginning, the new
Essence data object starts at a different point. However, the application will ensure that existing SourceClips in
Composition Mobs remain valid by changing the value of the Origin property in the MasterMob. By setting the
Origin to the current offset of the original starting point, the application ensures that existing Composition Mobs
remain valid.

26.3.3 Converting Edit Units to Sample Units
A TimelineMobSlot uses its own edit rate. So, a SourceClip in a Composition Mob indicates the starting position
in the source and the length of the Segment in edit units. When an application plays a Composition Mob, it maps
the Composition Mob's references to the source material into references to the corresponding digital essence
data.

To play the digital essence data referenced by a Composition Mob, the application uses the StartTime and
Length values of the Composition Mob's SourceClip, which are specified in edit units, along with the edit rate to
determine the samples to be taken from the essence data. The application converts edit units to sample
durations, adds the file Slot's Origin to the SourceClip's StartTime, then converts the resulting sample time offset
to a sample byte offset. Performing the final calculation for some essence data formats involves examining the
data to find the size in bytes of the particular samples involved. (All samples need not be the same size.) For
example, the JPEG Image Data object has a frame index.

An application would not need to reference the original physical SourceMob of the digitized data unless it is
necessary to redigitize or generate a source-relative description, such as an EDL or cut list.

In summary:

• Composition Mobs deal entirely in edit units, which are application-defined time units.

• Digital essence data such as video frames, animation frames, and audio samples are stored in a stream
of bytes, measured in sample units that represent the time duration of a single sample.

• Applications access essence data by converting edit units to sample units and then to byte offsets.

• MasterMobs maintain a reference point in the digitized essence data called the source origin.
Composition Mobs reference positions in the essence data relative to the origin.

26.4 Describing Essence Format with Essence Descriptors

SourceMobs describe the details of the essence format with an Essence Descriptor object. Essence Descriptor
is an abstract class that describes the format of the essence data. The essence data can be digitized essence
data stored in a file or it can be essence data on audio tape, film, videotape, or some other form of essence
storage.

There are two kinds of Essence Descriptors:

• File Descriptors that describe digital essence data stored in Essence data objects or in noncontainer
data files. The Essence File Descriptor class is also an abstract class; its subclasses describe the
various formats of digitized essence. If an Essence Descriptor object belongs to a subclass of File

AAF Object Specification 1.1

Page 112 of 136 pages

Descriptor, it describes digital essence data. If an Essence Descriptor object does not belong to a
subclass of File Descriptor, it describes a physical media source.

• Essence Descriptors that describe a physical media source. This specification defines the Film
Descriptor and Tape Descriptor, but additional private or registered subclasses of Essence Descriptors
can be defined.

If the digital essence data is stored in an AAF file, the ContainerDefinition property in the File Descriptor shall
reference the ContainerDefinition for the AAF file format. Digital essence data can be stored in a noncontainer
data file to allow an application that does not support this interchange specification to access it or to avoid
duplicating already existing digital essence data. However, since there is no MobID stored with raw essence
data, it is difficult to identify a raw essence data file if the Locator information is no longer valid. The format of the
digital essence data in the raw file is the same as it would be if it were stored in an Essence data object.

The File Descriptor specifies the sample rate and length of the essence data. The sample rate of the data can
be different from the edit rate of the SourceClip object that references it.

Figure 28 and Figure 29 below illustrate the containment diagram for File SourceMobs and the containment
diagram for Physical SourceMobs.

 AAF Object Specification v1.1

 Page 113 of 136 pages

Source Package

Timeline Slot1..*

Segment

SourceClip Pulldown

Segment

FileDescriptor

AIFCDescriptor DigitalImageDescriptor TIFFDescriptor WAVEDescriptor

CDCIDescriptor RGBADescriptor

TimecodeSourceClip

Figure 28 Containment Diagram for a File SourceMob

AAF Object Specification 1.1

Page 114 of 136 pages

Source Package

Timeline Slot1..*

Segment

SourceClip Pulldown

Segment

EssenceDescriptor

FilmDescriptor TapeDescriptor

TimecodeSourceClip

Timecode

Edgecode

Edgecode

Figure 29 Containment Diagram for a Physical SourceMob

26.4.1 Describing Image Essence
The goal of the image format is to simplify the representation of image data and to be able to store the
information required by video formats in common use. It can support compressed and uncompressed video and
can store images in either a color difference component or RGBA component image format. It provides a rich
description of the sampling process used to create the digital essence from an analog source. This information
allows applications to interpret the digital data to represent the original essence.

This section explains the image essence descriptions that are common to all image essence descriptors that are
subclasses of the Digital Image Descriptor class.

In order to correctly process or regenerate images, you need access to a complete description of the layout of
the images in the file. This description allows applications to extract the relevant information from the files, or, if
the images have been lost, restore images to their original digital form. At the most generic level, the description
of the images is conveyed by a combination of the following properties: dimensional properties (geometries),
sampling properties and colorspace properties.

These properties specify the following about the image format:

• Properties describing interleaving

 AAF Object Specification v1.1

 Page 115 of 136 pages

• Properties describing geometry

• Properties describing sampling

• Properties describing alpha transparency

• Properties describing compression

26.4.2 Properties Describing Interleaving
The major structure of the images is determined by how the images are collated. Images can be compound or
atomic. Atomic images contain the entire frame in one contiguous segment. Examples of atomic images include
computer graphic frames, digitized film frames, progressive-scan video, two-field interlaced video (even and odd
fields mixed together), and single-field video (video where one of the fields is discarded). Compound images
are, at this time, limited to two-field non-interlaced video, in which the fields are stored separately.

Since compound video images represent two sub-images, each with the same characteristics, the properties
describe the individual fields, and will apply equally to both fields. This is important for applications to recognize,
since compound video images have a listed height that is half of the entire frame.

Some image formats allow some form of selection between interleaved and blocked component order.
Interleaved ordering has the data organized by pixels, with each pixel containing all of the components it
comprises.

26.4.3 Properties Describing Geometry
The geometry properties describe the dimensions and meaning of the stored pixels in the image. The geometry
describes the pixels of an uncompressed image. Consequently, the geometry properties are independent of the
compression and subsampling.

Three separate geometries, stored view, sampled view, and display view, are used to define a set of different
views on uncompressed digital data. All views are constrained to rectangular regions, which means that storage
and sampling have to be rectangular.

The stored view is the entire data region corresponding to a single uncompressed frame or field of the image,
and is defined by its horizontal and vertical dimension properties. The stored view may include data that is not
derived from and would not usually be translated back to analog data.

The sampled view is defined to be the rectangular dimensions in pixels corresponding to the digital data derived
from an analog or digital source. These pixels reside within the rectangle defined by the stored view. This would
include the image and auxiliary information included in the analog or digital source. For the capture of video
signals, the mapping of these views to the original signal is determined by the VideoLineMap property.

The display view is the rectangular size in pixels corresponding to the viewable area. These pixels contain
image data suitable for scaling, display, warping, and other image processing. The display view offsets are
relative to the stored view, not to the sampled view.

Although typically the display view is a subset of the sampled view, it is possible that the viewable area may not
be a subset of the sampled data. It may overlap or even encapsulate the sampled data. For example, a subset
of the input image might be centered in a computer-generated blue screen for use in a chroma key effect. In this
case the viewable pixels on disk would contain more than the sampled image.

Each of these data views has a width and height value. Both the sampled view and the display view also have
offsets relative to the top left corner of the stored view.

26.4.4 Properties Describing Sampling
The sampling properties describe the parameters used during the analog-to-digital digitization process. The
properties detail the mapping between the signals as well as the format of the source analog signal. If the
essence originated in a digital format, these properties do not apply.

The VideoLineMap property is necessary for images that are derived from or will be converted to video
(television) signals. For each field, it describes the mapping, relative to the Sampled View in the digital essence,
of the digital image lines to the analog signal lines.

AAF Object Specification 1.1

Page 116 of 136 pages

The VideoLineMap specifies the relationship between the scan lines in the analog signal and the beginning of
the digitized fields. The analog lines are expressed in scan line numbers that are appropriate for the signal
format. For example, a typical PAL two-field mapping might be {20,332}, where scan line 20 corresponds to the
first line of field 1, and scan line 332 corresponds to the first line of field 2. Notice that the numbers are based on
the whole frame, not on offset from the top of each field, which would be {20,20}.

A value of 0 is allowed only when computer-generated essence has to be treated differently. If the digital
essence was computer generated (RGB), the values can be either {0,1} (even field first) or {1,0} (odd field first).

26.4.5 Properties Describing Alpha Transparency
The AlphaTransparency property determines whether the maximum alpha value or the 0 value indicates that the
pixel is transparent. If the property has a value of 1, then the maximum alpha value is transparent and a 0 alpha
value is opaque. If the property has a value of 0, then the maximum alpha value is opaque and the 0 alpha value
is transparent.

26.4.6 Properties Describing Compression
The Compression property specifies that the image is compressed and the kind of compression used. A value of
JPEG specifies that the image is compressed according to the following:

• Each image frame conforms to ISO DIS 10918-1. If the frame has two fields then each field is stored as
a separate image.

• Images may be preceded or followed by fill bytes.

• Quantization tables are required; they may not be omitted.

• Huffman tables are optional; if omitted, tables from the ISO standard are used.

JPEG image data are color difference component images that have been compressed using the JPEG
compression algorithm. The JPEG descriptor specifies a general set of quantization tables for restoring images
from the original essence. While tables may vary per image, these tables will represent a starting point.

The JPEG Image Data object has a frame index that allows you to access the frames without searching through
the file sequentially. Since the size of the compressed frame is different depending on the image stored on the
frame, the frame index is needed to directly access data for a frame.

Other values of the compression parameter will be defined for other schemes such as MPEG-2 Video, and
these other schemes will have their own parametric metadata and frame tables, etc.

26.4.7 RGBA Component Image Descriptors
An RGBA Component Image object describes essence data that consists of component-based images where
each pixel is made up of a red, a green, and a blue value. Each pixel can be described directly with a
component value or by an index into a pixel palette.

Properties in the RGBA descriptor allow you to specify the order that the color components are stored in the
image, the number of bits needed to store a pixel, and the bits allocated to each component.

If a color palette is used, the descriptor allows you to specify the color palette and the structure used to store
each color in the palette.

26.4.8 Color Difference Component Image Descriptors
Color Difference Component Image objects specify pixels with one luminance component and two color-
difference components. This format is commonly known as YCbCr.

It is common to reduce the color information in luma/chroma images to gain a reasonable data reduction while
preserving high quality. This is done through chrominance subsampling. Subsampling removes the color
information from a fraction of the pixels, leaving the luminance information unmodified. This removal has the
effect of cutting the sampling rate of the chrominance to a fraction of the luminance sampling rate. The fraction
is controlled by the subsampling specification property. The subsampling factor specifies the number of pixels
that will be combined down to one for chrominance components.

 AAF Object Specification v1.1

 Page 117 of 136 pages

Since the color information is reduced across space, it is useful to be able to specify where in the space the
stored pixel is sited. Understanding the siting is important because misinterpretation will cause colors to be
misaligned.

For uncompressed images, subsampling is limited to horizontal, since the pixels are interleaved.

26.4.9 Describing TIFF Image Essence
Informative note: The TIFF image format has been superseded by the Color Difference Component Image Descriptor
format and the RGBA Component Image Descriptor format in the current version of the specification. The TIFF format is
included in this specification for compatibility.
A TIFF Image Descriptor object describes the TIFF image data associated with the SourceMob. The image data
is formatted according to the TIFF specification, Revision 6.0, available from Adobe Corporation. The TIFF
object type supports only the subset of the full TIFF 6.0 specification defined as baseline TIFF in that document.

The JPEGTableID is an assigned type for preset JPEG tables. The table data must also appear in the TIFF
object along with the sample data, but cooperating applications can save time by storing a preapproved code in
this property that presents a known set of JPEG tables.

26.4.10 Describing Audio Essence
An AIFC object contains digitized audio data in the big-endian byte ordering. It contains data formatted
according to the Audio Interchange File Format (AIFF), Apple Computer, Inc., Version 1. The audio data and the
AIFC descriptor data are contained in the AIFC object.

Note that, although the AIFC standard is designed to support compressed audio data, the AIFC essence format
defined by this specification does not include any compressed audio formats. The only AIFC compression form
supported is NONE and the only AIFC data items that are necessary are the COMM and SSND data items. All
other AIFC data items can be ignored. The descriptive information is contained directly in the AIFC object. The
AIFC SSND data is duplicated in the AIFC Audio Descriptor to make it more efficient to access this information.

A WAVE object contains digitized audio data in the little-endian byte ordering. It contains data formatted
according to the Microsoft/IBM Multimedia Programming Interface and Data Specifications, Version 1.0, but
limited to the section describing the RIFF Waveform Audio File Format audio data. The WAVE file information
(without the sample data) is duplicated in the WAVE Audio Descriptor to make it more efficient to access this
information.

The descriptive information is contained directly in the WAVE object. No additional data properties or objects are
defined for WAVE data, because this format includes all of the metadata needed for playback.

If a MasterMob or SourceMob has two stereo audio essence tracks, the PhysicalChannelNumber indicates the
physical input channel according to the following convention: 1 indicates the left channel and 2 indicates the
right channel.

26.4.11 Describing Tape and Film
The Tape Descriptor describes videotape and audio tape media sources. The Film Descriptor describes film
sources. Their properties describe the physical storage format used for the essence. When you create a tape or
film SourceMob, you can include as many of these properties as your application has access to. Since these
properties are optional, they can be omitted when they are unknown.

26.4.12 Describing Timecode
Timecode typically is described in a SourceMob or in a Composition Mob. Timecode can be described by
specifying a starting timecode value or by including a stream of timecode data.

A Timecode object in a SourceMob typically appears in a Slot in a SourceMob that describes a videotape or
audio tape. In this context it describes the timecode that exists on the tape.

If a tape has a contiguous timecode, the SourceMob can have:

• A Slot for each track of essence on the tape; the Slot should have a single SourceClip whose Length
equals the duration of the tape.

AAF Object Specification 1.1

Page 118 of 136 pages

• A Slot for the timecode track that has a Start value equal to the timecode at the beginning of the tape
and whose Length equals the duration of the tape.

If a tape contains noncontiguous timecodes, then the Slot can have a Sequence of Timecode objects; each
representing a contiguous section of timecode on the tape or can specify the timecode stream data.

In some cases the information required to accurately describe the tape's timecode may not be available. For
example, if only a section of a videotape is digitized, the application may not have access to the timecode at the
start of the videotape. In these cases, applications may create a SourceMob in which the duration of the
SourceClip does not necessarily match the duration of the videotape.

The timecode information for digital essence data and file SourceMobs is contained in the videotape SourceMob
that describes the videotape used to generate the digital essence data.

The starting timecode for digital essence data is specified by the SourceClip in the File SourceMob and by the
timecode track in the videotape SourceMob. The SourceClip specifies the MobID of the videotape SourceMob,
the SlotID for the Slot describing the essence data, and the offset in that track. To find the timecode value, you
must find the value specified for that offset in the timecode Slot of the videotape SourceMob.

If a videotape has continuous timecode for the entire tape, it is specified by a single Timecode object. If a
videotape has discontinuous timecode, interchange files typically describe it with a single Timecode object that
encompasses all timecode values that are used on the videotape. Discontinuous timecode can also be
described by the following

A timecode track that has a sequence of Timecode objects, each of which specifies the starting timecode and
the duration of each section of continuous timecode on the videotape

A timecode stream that duplicates the timecode data stored on the videotape

If the timecode track has a single Timecode object, you add the offset to the starting timecode value specified by
the Timecode object.

If the timecode track has a sequence of Timecode objects, you calculate the timecode by finding the Timecode
object that covers the specified offset in the track and add to its starting timecode the difference between the
specified offset and the starting position of the Timecode object in the track.

If a SourceMob has more than one timecode Slot, the PhysicalTrackNumber property indicates the purpose of
each as described in Table below.

Physical Track Number Time Code Type
1 Primary timecode
2 Reserved
3 Aux1
4 Aux2
5 Aux3
6 Aux4
7 Aux5

8-12 Reserved

PhysicalTrackNumber values for timecode MobSlots in a tape SourceMob

26.4.13 Describing Edgecode
Film edgecode is described in Film Mobs. Edgecode is specified with a TimelineMobSlot containing an
Edgecode object. The Edgecode object specifies the starting edgecode value, the type of film, and the text
egdecode header. If there is more than one edgecode Slot, the purpose of each is described by the
PhysicalTrackNumber property as described in the Table below.

 AAF Object Specification v1.1

 Page 119 of 136 pages

Physical Track Number Usage
1 Keycode Number
2 Ink Number
3 Aux. Ink Number

Physical Track Number and Edgecode Usage

26.4.14 Describing Essence with Pulldown Objects
Pulldown is a process to convert essence with one frame rate to essence with another frame rate. This
interchange specification describes how essence has been converted with Pulldown objects in File SourceMobs
and videotape SourceMobs.

26.4.15 What is Pulldown?
Pulldown is a process to convert between essence at film speed of 24 frames per second (fps) and essence at a
videotape speed of either 29.97 fps or 25 fps. It is important to track this conversion accurately for two reasons:

• If the final essence format is film and the edits are being done in video, you must be able to accurately
identify a film frame or the cut may be done at the wrong frame in the film.

• You need to be able to maintain the synchronization between picture and audio.

There are two processes that are used to generate a videotape that matches the pictures on film:

• Telecine after the film has been processed a videotape is generated from the film negative or workprint.

• Video tap during filming a video camera taps the images being filmed and records a videotape as the
film camera shoots the take. The video camera gets the same image as the film camera tapping the
image by means of either a half-silvered mirror or a parallel lens.

The videotape can then be digitized to produce a digital video data that can be edited on a nonlinear editing
system.

It is also possible to digitize a film image without creating a videotape. The film image can be digitized at film
resolution, video resolution, or both.

The audio tracks also are transferred from the original recording essence to digital audio data stored on a
nonlinear editing system. The audio tracks can be transferred by the same mechanism as the video tracks or by
a different mechanism.

Nonlinear editing of material that originated on film can use any of the following workflows:

• Offline film project film to tape to digital to film cut list

• Offline video project film to tape to digital with matchback to videotape EDL and/or film cut list

• Online video project film to tape to digital, recording a final cut from digital to tape

Each of these workflows has a different requirement for synchronizing the digital, tape, and film media for both
audio and video.

26.4.16 NTSC Three-Two Pulldown
The relation between film speed (24 fps) and NTSC (29.97) is approximately 4 to 5. A videotape will have five
frames for each four frames of film. Three-Two pulldown accomplishes this by creating three fields from half of
the frames and two fields from the other frames. The A and C frames are transferred into two fields and the B
and D frames are transferred into three fields.

Since NTSC videotape has a speed of 29.97 fps, in order to get an exact ratio of 4 to 5, the film is played at
23.976 fps in the telecine machine instead of its natural speed of 24 fps.

Figure 30 below illustrates how four film frames are converted to five video frames in Three-Two pulldown by
converting film frames to either two or three video fields.

AAF Object Specification 1.1

Page 120 of 136 pages

Figure 30 Telecine Three-Two Pulldown

During the telecine process, a white flag can be added to the vertical blanking interval of the first field of video
that corresponds to a new film frame.

A tape Mob describing a tape produced by telecine should have edit rates of 30 fps for its tracks. Although the
videotape is always played at 29.97 fps, the material has a speed of 30 fps.

If the final distribution format is being generating from film, there are advantages to digitizing the videotape to
digital video essence that has a film sample rate. This is done by a reverse telecine process where only 4 digital
fields are created from 5 video frames, which contain 10 video fields.

26.4.17 Other Forms of Pulldown
If an NTSC videotape is generated by a video camera running in synchronization with the film camera, the film
camera runs at 24 fps and the video runs at 29.97 fps. Four film frames do not correspond to exactly five video
frames; they correspond to slightly more than five video frames. The video tap uses a white flag in the vertical
blanking area to indicate when a new film frame starts. The first field that starts after the film frame starts is
indicated by a white flag.

PAL video and 24 fps film can be converted by simply speeding up the film to PAL's 25 fps rate or can be
converted by a pulldown process by converting all 24 frames except the twelfth and twenty-fourth into two fields
of video and converting the twelfth and twenty-fourth film frames into three fields of video.

26.4.18 Pulldown Objects in SourceMobs
If NTSC video is digitized to a 24-fps film rate using a reverse Three-Two pulldown, both the File SourceMob
and the Videotape SourceMob have Pulldown objects.

The Pulldown object in the File SourceMob describes how the videotape was digitized. The track in the File
SourceMob has an edit rate of 24/1 but the SourceClip in the Pulldown object has an edit rate of 30/1. The
Pulldown object specifies the phase of the first frame of the digital essence data. The phase has a value in the
range 0 to 3, where 0 specifies the A frame and 3 specifies the D frame.

 AAF Object Specification v1.1

 Page 121 of 136 pages

The Pulldown object in the videotape SourceMob describes how the video was generated from film. The track in
the videotape SourceMob has an edit rate of 30/1 but the SourceClip in the Pulldown object has an edit rate of
24/1. The phase specifies where the first frame of the section of videotape is in the 5-frame repeating pattern.
The phase has a value in the range 0 to 4, where 0 specifies that the first frame is the AA frame.

You need to use the phase information to convert an offset in the Mob track containing the Pulldown object to an
offset in the previous generation Mob. To convert a film-rate offset, you multiply it by 5/4 to get a video rate
offset, but if the result is not an integer, you use the phase information to determine whether you round up or
down to get an integer value.

Typically a videotape is generated from more than one piece of film. In this case, the picture track in the
videotape SourceMob has a Sequence object which has a Pulldown object for each section of film that has been
telecined. If the videotape has discontinuous timecode and the videotape SourceMob timecode track has a
single Timecode object, then the Pulldown objects in the Sequence are separated by Filler objects that
correspond to the skipped timecodes on the videotape.

27 Meta-Classes
AAF Meta-Classes are the classes provided for defining Interchange Objects. This chapter contains the
reference descriptions of the AAF Meta-Classes. The reference pages are arranged alphabetically, followed by
the MetaDictionary class which contains the MetaDefinitions.

27.1 MetaDefinition class

The MetaDefinition class is an abstract class that defines a class, type, or property in an AAF file.

The MetaDefinition class is a root class.

The MetaDefinition class is an abstract class.

MetaDefinition
Identification : AUID
Name : String
Description : String

Property Name Type Req ? Meaning
Identification AUID Req Specifies the unique identifier for the item being defined

Name String Req Specifies the display name of the item being defined
Description String Opt Provides an explanation of the use of the item being defined

27.2 ClassDefinition class

The ClassDefinition class extends the class hierarchy defined in this document by specifying a new class or by
defining additional optional properties for a class defined in this document.

The ClassDefinition class is a sub-class of the MetaDefinition class.

All ClassDefinition objects shall be owned by the MetaDictionary object.

AAF Object Specification 1.1

Page 122 of 136 pages

MetaDefinition

PropertyDefinition

ParentClass

ClassDefinition
IsConcrete : Boolean

Properties

0..* {set}

Property
Name Type Req

? Meaning

ParentClass WeakReference to
ClassDefinition

Req Specifies the parent of the class being defined

Name StrongReferenceSet of
PropertyDefinition

Opt Specifies the set of PropertyDefinition objects that define the properties for a class

IsConcrete Boolean Req Specifies if the class is concrete. If the class is not concrete, then it is abstract. Any object in an
AAF file that belongs to an abstract class shall also belong to a concrete subclass of the

abstract class

Any class extension shall be descended from the InterchangeObject class. A Class Definition object specifying
the InterchangeObject class shall have a ParentClass property with a weak reference to itself.

27.3 PropertyDefinition class

The PropertyDefinition class describes properties allowed for a class.

The PropertyDefinition class is a sub-class of the MetaDefinition class.

A PropertyDefinition object shall be owned by a ClassDefinition.

MetaDefinition

PropertyDefinition

TypeDefinition
Type

IsOptional : Boolean
LocalIdentification : UInt16
IsUniqueIdentification : Boolean

Property Name Type Req
? Meaning

 AAF Object Specification v1.1

 Page 123 of 136 pages

Property Name Type Req
? Meaning

Type WeakReference to
TypeDefinition

Req Specifies the property type

IsOptional Boolean Req Specifies whether objects instances can omit a value for the property
LocalIdentification UInt16 Req Specifies a local integer identification that is used to identify the property in the AAF

file
IsUniqueIdentifier Boolean Opt Specifies that this property provides a unique identification for this object

The PropertyDefinition object specifies that a property can be used in a class.

The LocalIdentification property is used internally within the AAF file for efficiency purposes but has no semantic
meaning.
Informative note: In the AAF reference implementation, related interfaces are IAAFPropertyDef and IAAFClassDef.

27.4 TypeDefinition class

The TypeDefinition class defines a property type.

The TypeDefinition class is a sub-class of the MetaDefinition class.

The TypeDefinition class is an abstract class.

MetaDefinition

TypeDefinition

The TypeDefinition class does not define any additional properties.

27.5 TypeDefinitionCharacter class

The TypeDefinitionCharacter class defines a property type that has a value of a single 2-byte character.

The TypeDefinitionCharacter class is a sub-class of the TypeDefinition class.

All TypeDefinitionCharacter objects shall be owned by the MetaDictionary object.

TypeDefinition

TypeDefinitionCharacter

AAF Object Specification 1.1

Page 124 of 136 pages

The TypeDefinitionCharacter class does not define any additional properties.

27.6 TypeDefinitionEnumeration class

The TypeDefinitionEnumeration class defines a property type that can have one of a set of integer values.

The TypeDefinitionEnumeration class is a sub-class of the TypeDefinition class.

All TypeDefinitionEnumeration objects shall be owned by the MetaDictionary object.

TypeDefinition

TypeDefinitionEnumeration
ElementNames : StringArray
ElementValues : Int64Array

ElementType

Property
Name Type Req

? Meaning

ElementType WeakReference to
TypeDefinition

Req Specifies the TypeDefinition that defines the underlying integer type

ElementNames StringArray Req Specifies the names associated with each enumerated value
ElementValues Int64Array Req Specifies the valid enumerated values. The integer values shall be positive and each value in

the array shall be unique

27.7 TypeDefinitionExtendibleEnumeration class

The TypeDefinitionExtendibleEnumeration class defines a property type that can have one of an extendible set
of AUID values.

The TypeDefinitionExtendibleEnumeration class is a sub-class of the TypeDefinition class.

All TypeDefinitionExtendibleEnumeration objects shall be owned by the MetaDictionary object.

TypeDefinition

TypeDefinitionExtendibleEnumeration
ElementNames : StringArray
ElementValues : AUIDArray

 AAF Object Specification v1.1

 Page 125 of 136 pages

Property Name Type Req ? Meaning
ElementNames StringArray Req Specifies the names associated with each enumerated value
ElementValues AUIDArray Req Specifies the known AUID values that can be used in this type

27.8 TypeDefinitionFixedArray class

The TypeDefinitionFixedArray class defines a property type that has a fixed number of values of the underlying
type. The order of the values is meaningful.

The TypeDefinitionFixedArray class is a sub-class of the TypeDefinition class.

All TypeDefinitionFixedArray objects shall be owned by the MetaDictionary object.

TypeDefinition

ElementType

TypeDefinitionFixedArray
ElementCount : UInt32

Property Name Type Req ? Meaning
ElementType WeakReference to TypeDefinition Req Specifies the TypeDefinition that defines the type of each element of the array
ElementCount UInt32 Req Specifies the number of elements in the array

27.9 TypeDefinitionIndirect class

The TypeDefinitionIndirect class defines a property type that has a value whose type is specified in each
instance.

The TypeDefinitionIndirect class is a sub-class of the TypeDefinition class.

All TypeDefinitionIndirect objects shall be owned by the MetaDictionary object.

TypeDefinition

TypeDefinitionIndirect

AAF Object Specification 1.1

Page 126 of 136 pages

The TypeDefinitionIndirect class does not define any additional properties.

27.10 TypeDefinitionInteger class

The TypeDefinitionInteger class defines a property type that is an integer with the specified number of bytes.

The TypeDefinitionInteger class is a sub-class of the TypeDefinition class.

All TypeDefinitionInteger objects shall be owned by the MetaDictionary object.

TypeDefinition

TypeDefinitionInteger
Size : UInt8
IsSigned : Boolean

Property Name Type Req ? Meaning
Size UInt8 Req Specifies the number of bytes to store the integer. Legal values are 1, 2, 4, and 8

IsSigned Boolean Req Specifies if the integer is signed (True) or unsigned (False)

27.11 TypeDefinitionOpaque class

The TypeDefinitionOpaque class defines a property type that has a value whose type is specified in each
instance.

The TypeDefinitionOpaque class is a sub-class of the TypeDefinitionIndirect class.

All TypeDefinitionOpaque objects shall be owned by the MetaDictionary object.

TypeDefinitionIndirect

TypeDefinitionOpaque

The TypeDefinitionOpaque class does not define any additional properties.

 AAF Object Specification v1.1

 Page 127 of 136 pages

27.12 TypeDefinitionRecord class

The TypeDefinitionRecord class defines a property type that consists of an ordered set of fields, where each
field has a name and type.

The TypeDefinitionRecord class is a sub-class of the TypeDefinition class.

All TypeDefinitionRecord objects shall be owned by the MetaDictionary object.

TypeDefinition

TypeDefinitionRecord
MemberNames : StringArray

MemberTypes

1..* {ordered}

Property Name Type Req ? Meaning
MemberTypes WeakReferenceVector of TypeDefinition Req Specifies the type of each element of the record
MemberNames StringArray Req Specifies the name of each element of the record

27.13 TypeDefinitionRename class

The TypeDefinitionRename class defines a property type that has the same structure and representation as its
underlying type but has a different meaning.

The TypeDefinitionRename class is a sub-class of the TypeDefinition class.

All TypeDefinitionRename objects shall be owned by the MetaDictionary object.

TypeDefinition

TypeDefinitionRename

RenamedType

Property Name Type Req ? Meaning
RenamedType WeakReference to TypeDefinition Req Specifies the underlying type

AAF Object Specification 1.1

Page 128 of 136 pages

27.14 TypeDefinitionSet class

The TypeDefinitionSet class defines a property type that has a collection of object references to uniquely
identified objects. The order of the objects has no meaning.

The TypeDefinitionSet class is a sub-class of the TypeDefinition class.

All TypeDefinitionSet objects shall be owned by the MetaDictionary object.

TypeDefinition

ElementType

TypeDefinitionSet

Property
Name Type Req

? Meaning

ElementType WeakReference to
TypeDefinition

Req Specifies the TypeDefinition that identifies the kind of object reference. This TypeDefinition shall
belong to either the TypeDefinitionStrongObjectReference or TypeDefinitionWeakObjectReference

27.15 TypeDefinitionStream class

The TypeDefinitionStream class defines a property type that is stored in a stream and has a value that consists
of a varying number of the bytes. The order of the bytes is meaningful.

The TypeDefinitionStream class is a sub-class of the TypeDefinition class.

All TypeDefinitionStream objects shall be owned by the MetaDictionary object.

TypeDefinition

TypeDefinitionStream

The TypeDefinitionStream class does not define any additional properties.

27.16 TypeDefinitionString class

The TypeDefinitionString class defines a property type that consists of a zero-terminated array of the underlying
character or integer type.

 AAF Object Specification v1.1

 Page 129 of 136 pages

The TypeDefinitionString class is a sub-class of the TypeDefinition class.

All TypeDefinitionString objects shall be owned by the MetaDictionary object.

TypeDefinition

ElementType

TypeDefinitionString

Property
Name Type Req

? Meaning

ElementType WeakReference to
TypeDefinition

Req Specifies the string element, which may be a character (TypeDefinitionCharacter) or integer
(TypeDefinitionInteger)

27.17 TypeDefinitionStrongObjectReference class

The TypeDefinitionStrongObjectReference class defines a property type that defines an object relationship
where the target of the strong reference is owned by the object with the property with the
TypeDefinitionStrongObjectReference type. An object can be the target of only one strong reference.

The TypeDefinitionStrongObjectReference class is a sub-class of the TypeDefinition class.

All TypeDefinitionStrongObjectReference objects shall be owned by the MetaDictionary object.

TypeDefinition

ClassDefinition

TypeDefinitionStrongObjectReference

ReferencedType

Property Name Type Req
? Meaning

ReferencedType WeakReference to
ClassDefinition

Req Specifies the class that the referenced object shall belong to (the referenced object may also
belong to a subclass of the referenced class)

AAF Object Specification 1.1

Page 130 of 136 pages

27.18 TypeDefinitionVariableArray class

The TypeDefinitionVariableArray class defines a property type that has a varying number of values of the
underlying type. The order of the values is meaningful.

The TypeDefinitionVariableArray class is a sub-class of the TypeDefinition class.

All TypeDefinitionVariableArray objects shall be owned by the MetaDictionary object.

TypeDefinition

ElementType

TypeDefinitionVariableArray

Property Name Type Req ? Meaning
ElementType WeakReference to TypeDefinition Req Specifies the type of the element of the array

27.19 TypeDefinitionWeakObjectReference class

The TypeDefinitionWeakObjectReference class defines a property type that defines an object relationship where
the target of the weak reference is referenced by the object with the property with the
TypeDefinitionWeakObjectReference type. Only objects that define a unique identification (AUID or MobID) can
be the targets of weak object references. An object can be the target of one or more than one weak references.

The TypeDefinitionWeakObjectReference class is a sub-class of the TypeDefinition class.

All TypeDefinitionWeakObjectReference objects shall be owned by the MetaDictionary object.

TypeDefinition

ClassDefinition
ReferencedType

TypeDefinitionWeakObjectReference
TargetList : AUIDArray

Property Name Type Req
? Meaning

ReferencedType WeakReference to
ClassDefinition

Req Specifies the class that the referenced object shall belong to (the referenced object may also belong to
a subclass of the referenced class)

TargetList AUIDArray Req Specifies the AUIDs that specify the properties from the root of the file to the property that has the

 AAF Object Specification v1.1

 Page 131 of 136 pages

Property Name Type Req
? Meaning

StrongReferenceSet containing the uniquely identified objects that may be the target of the weak
reference. The first AUID in the array identifies the object in the file’s root storage. The last AUID in the
array identifies the property containing the set of uniquely identified objects. The AUIDs between the

first and the last identify properties that must have a TypeDefinitionStrongObjectReference and define
the containing hierarchy from the object in the root storage to the object containing the

StrongReferenceSet.

27.20 MetaDictionary class

The MetaDictionary class contains MetaDefinition objects. An AAF file shall have exactly one MetaDictionary
object.

The MetaDictionary class is a root class.

MetaDictionary
TypeDefinitions

ClassDefinitions

0..* {set}

0..* {set}
TypeDefinition

ClassDefinition

Property Name Type Req ? Meaning
ClassDefinitions StrongReferenceSet of ClassDefinition Opt Specifies the ClassDefinitions that are used in the file
TypeDefinitions StrongReferenceSet of TypeDefinition Opt Specifies the TypeDefinitions that are used in the file

Informative note: The Dictionary object API in the AAF reference implementation (IAAFDictionary) is used to access the
MetaDictionary.

28 Extensions

28.1 Overview of Extending AAF

The Advanced Authoring Format is designed to allow extensions. AAF files can include extensions that define
new effects, new kinds of metadata, and new kinds of essence data.

As the technologies of authoring applications advance, people can use the applications to do new things and will
want to interchange this new kind of information between applications. Typically, these new features are added
by one or a few applications, and gradually, as the technology matures, the features become common to many
applications. Consequently, these features are first defined as private extensions to this specification and may
later progress to be included in this specification.

Applications may want to store information in extensions for the following reasons:

AAF Object Specification 1.1

Page 132 of 136 pages

• To store optional information which can be displayed to the user by other applications. For example an
application can store user-specified comments about essence or compositions.

• To store information for targeted exchange. Two or more applications can be coded to understand
private or registered information.

• To store internal application-specific information so that the application can use this interchange format
as a native file format.

• To define new essence formats for use by plug-in codecs.

The extra information stored by an application can vary in scale from a single private property to a complex
structure of private objects.

Extensions may define the following:

• New effects

• New classes

• New properties

• New property types

• New essence types

• Plug-in code

New effects and new essence types may require special code to process the effect or essence. This code can
be supplied in a plug-in module. The plug-in mechanism is not defined as part of this specification. This
specification defines the properties required to specify a locator to find a plug-in.

Extensions are specified in the Header Dictionary and the MetaDictionary objects.

28.2 Defining New Effects

The EffectsDefinition class defines new effects. Effect definitions include the following:

AUID that identifies the effect

Effect name and description for display purposes

• Plugin locators

• Number of essence input segments, specifies -1 for effects that can have any number of input essence
segments

• Control code definitions that define the effect's parameters:

o AUID identifying control code

o Data kind of parameter

o Range of allowed values

o Text associated with enumerated values

When appropriate new Effect Definitions should use existing control codes and data kinds. If an Effect Definition
specifies a previously defined control code, it must specify the same data kind.

If the data kind definition specifies a range of allowed values, an Effect Definition can limit the range of allowed
values to a lesser range but cannot extend the range.

 AAF Object Specification v1.1

 Page 133 of 136 pages

28.3 Defining New Classes

To define a new class, you need to generate a AUID for the class and then have your application create an
ClassDefinition object in any interchange file that has the new class. The ClassDefinition object specifies the
following:

• AUID that identifies the class

• Superclass of the class

• Class name for display purposes

• Properties that can be included in objects belonging to the class

28.4 Defining New Properties

You define new properties as part of a Class Definition. If you are defining a new class, you must specify all the
properties that can be used for the class. If you are adding optional properties to a class defined by this
document, you need only to specify the new properties in the class definition. You can omit the properties
defined in this document from the class definition.

In a class definition, each property definition specifies the following:

• AUID that identifies the property

• Property name for display purposes

• AUID that identifies the property type

• Optionally, range of allowed values or text associated with enumerated values

If the property has a new property type, the property type definition shall be included in the definition objects
defined in the MetaDictionary object. If the property has a property type defined in this document, you can omit
the property type definition.

28.5 Defining New Essence Types

The scope of the task of defining new essence types varies greatly depending on how different the new essence
type is from the existing ones. Defining a new essence type can consist of any of the following

• Defining a new compression method for an existing data kind, such as video

• Defining a new essence type that requires a new data kind for segments

• Defining a new essence type that requires a new kind of Slot and a new set of classes for Composition
Mobs

This section contains a brief description of how to define a new essence type that uses an existing data kind.
Describing the requirements of defining a new data kind, a new kind of Slot, or new classes for Composition
Mobs is beyond the scope of this document.

To define a new essence type, you must:

• Define a new subclass of FileDescriptor or a new subclass of EssenceDescriptor for SourceMobs that
are not File SourceMobs

• Define a new subclass of EssenceData or use an existing class

• Create a plug-in essence codec that can import and export the essence data based on the information
in the File Descriptor

Typically, when defining a new essence format you can use the existing classes for the Slots and Segments in
the SourceMob, but you do have to define a new Essence Descriptor.

AAF Object Specification 1.1

Page 134 of 136 pages

If the new essence type consists of a single kind of essence data, such as a single video stream or a static
image, the SourceMob should have a single Slot. If the essence type is a compound format that has multiple
tracks of essence data, the File SourceMob should have a separate Slot for each separate track of essence
data.

28.6 Tracking Changes with Generation

If your application stores extended data that is dependent on data stored in AAF’s built-in classes and
properties, your application may need to check if another application has modified the data in the built-in classes
and properties.

The InterchangeObject Generation property allows you to track whether another application has modified data in
an AAF file that may invalidate data that your application has stored in extensions. The Generation property is a
weak reference to the Identification object created when an AAF file is created or modified. If your application
creates extended data that is dependent on data stored in AAF built-in classes or properties, you can use the
Generation property to check if another application has modified the AAF file since the time that your application
set the extended data. To do this, your application stores the value of the GenerationAUID of the Identification
object created when your application set the value of the extended data.

Consider the following example (Figure 31 below), an application creates a Sequence containing a SourceClip
with extended properties that contain data that make it more efficient for the application to play the SourceClip.
However, this data is dependent on the section of essence to be played and the position of the SourceClip in the
Sequence. The section of essence to be played is specified by the SourceClip’s SourceID and SourceSlotID
properties and the position in the Sequence is specified by the Sequence Components property.

 AAF Object Specification v1.1

 Page 135 of 136 pages

Application A
creates Sequence
with Source Clip

containing
extended data

Application B
modifies AAF file
and may modify

Sequence or
Source Clip

Sequence and
Source Clip
Generation
matches

extended data

Sequence
and Source

Clip
Generation
updated if

modified by
Application B

Application A
compares

Sequence and
Source Clip

Generation with
AUID stored in

extended
properties

Does Sequence
and Source Clip

generation match
stored AUID

Yes

No Recalculate
extended data

Figure 31 Using InterchangeObject::Generation to track generation

When an object is created or modified, the Generation property is set as a weak reference to the Identification
object created when the AAF file was created or opened for modification. If the Generation property is not
present in an object, that object was created or last modified when the file was first created.
Informative note: The Interchange object API in the AAF reference implementation (IAAFObject) is used to control
generation tracking. In the AAF reference implementation, generation tracking is disabled by default.

AAF Object Specification 1.1

Page 136 of 136 pages

29 Bibliography
1. Advanced Authoring Format, http://www.aafassociation.org
2. EBU / SMPTE Task Force for Harmonized Standards for the Exchange of Program Material as Bit-streams –

1998, http://www.smpte.org and http://www.ebu.ch
3. SMPTE 377M-2003 Television — Material Exchange Format (MXF) File Format Specification
4. SMPTE 330M-2000 for Television — Unique Material Identifier (UMID)
5. SMPTE 12M, 1995: For Television, Audio and Film – Time and Control Code
6. Apple Computer – Audio Interchange File Format with Compression (AIFC) v1
7. Microsoft Corporation – RIFF Waveform Audio File Format
8. Aldus Developers Desk – TIFF Revision 6.0 Final – June 3, 1992.
9. AES3-1992 (last amended1999), AES Recommended practice for digital audio engineering — Serial

transmission format for two-channel linearly represented digital audio data
10. SMPTE 268M-1994 — File Format for Digital Moving-Picture Exchange (DPX)

http://www.aafassociation.org/
http://www.smpte.org/
http://www.ebu.ch/

	Table of Contents
	Scope
	Normative References
	Definition of Acronyms, Terms and Notation
	Acronyms and Terms
	Notation

	Introduction
	Object Oriented Interchange
	Header Object
	Mobs
	MobSlots
	Components
	References between Mobs
	File SourceMobs and EssenceData objects
	Static Image Essence in Mobs
	Time-varying Video and Audio Essence in Mobs
	Event Data in Mobs

	AAF Class Hierarchy
	Object model goals
	Classes and semantic rules
	Class Hierarchy

	InterchangeObject Classes
	InterchangeObject class
	Header class
	Identification class
	Dictionary class
	ContentStorage class
	Mob class
	CompositionMob class
	MasterMob class
	SourceMob class
	MobSlot class
	TimelineMobSlot class
	EventMobSlot class
	StaticMobSlot class
	KLVData class
	TaggedValue class
	Parameter class
	ConstantValue class
	VaryingValue class
	ControlPoint class
	Locator class
	NetworkLocator class
	TextLocator class
	DescriptiveFramework class

	Component Classes
	Component class
	Transition class
	Segment class
	Sequence class
	Filler class
	SourceReference class
	SourceClip class
	Event class
	CommentMarker class
	DescriptiveMarker class
	GPITrigger class
	Timecode class
	TimecodeStream class
	TimecodeStream12M class
	Edgecode class
	Pulldown class
	OperationGroup class
	NestedScope class
	ScopeReference class
	Selector class
	EssenceGroup class

	DefinitionObject Classes
	DefinitionObject class
	DataDefinition class
	ContainerDefinition class
	OperationDefinition class
	ParameterDefinition class
	InterpolationDefinition class
	CodecDefinition class
	PluginDefinition class
	TaggedValueDefinition class
	KLVDataDefinition class

	EssenceData Classes
	EssenceData class

	EssenceDescriptor Classes
	EssenceDescriptor class
	FileDescriptor class
	DigitalImageDescriptor class
	CDCIDescriptor class
	RGBADescriptor class
	TapeDescriptor class
	FilmDescriptor class

	Non-normative Essence Types
	WAVEDescriptor class
	AIFCDescriptor class
	TIFFDescriptor class (optional)

	Compressed Picture Essence Types
	Sound Essence Types
	SoundDescriptor class
	PCMDescriptor class

	Multiplexed Essence Types
	Physical Essence Types
	PhysicalDescriptor class
	ImportDescriptor class
	RecordingDescriptor class
	AuxiliaryDescriptor class

	Reserved
	Reserved
	Reserved
	Reserved
	Operational Pattern identifiers
	Operational Pattern identifiers

	Built-In Types
	Basic and Structured Types
	Enumerated Types

	Built-In Data Definitions
	Built-In Data Definitions

	Built-In Extensible Enumerations
	Built-In Extensible Enumerations

	Built-In OperationDefinitions
	Tutorial on Compositions
	Composition Mob Basics
	TimelineMobSlots
	Sequences
	Transitions
	StaticMobSlots
	Combining Different Types of Slots
	Operations
	Scope and References
	Other Composition Mob Features

	Tutorial on Describing Essence
	Overview of Essence
	Describing Essence with MasterMobs
	Describing Essence with SourceMobs
	Describing Essence Format with Essence Descriptors

	Meta-Classes
	MetaDefinition class
	ClassDefinition class
	PropertyDefinition class
	TypeDefinition class
	TypeDefinitionCharacter class
	TypeDefinitionEnumeration class
	TypeDefinitionExtendibleEnumeration class
	TypeDefinitionFixedArray class
	TypeDefinitionIndirect class
	TypeDefinitionInteger class
	TypeDefinitionOpaque class
	TypeDefinitionRecord class
	TypeDefinitionRename class
	TypeDefinitionSet class
	TypeDefinitionStream class
	TypeDefinitionString class
	TypeDefinitionStrongObjectReference class
	TypeDefinitionVariableArray class
	TypeDefinitionWeakObjectReference class
	MetaDictionary class

	Extensions
	Overview of Extending AAF
	Defining New Effects
	Defining New Classes
	Defining New Properties
	Defining New Essence Types
	Tracking Changes with Generation

	Bibliography

